CHEM 3471/3491, Professor M. Walczak, Fall 2018 Midterm 3 | student ID: | | | | | | | | | _ | Recitation TA: | | | | | | | | | | | | | |--------------|---|--|----------------------|--|---|---|---|---------------------------------------|--|---|---|--|--|--|--|---|---------------------------------------|--|---|--|--|--| | Recitation I | ecitation Day and Time: | | | | | | | | | | Signature: | | | | | | | | | | | | | 1 | / 15 | | | | | | | | | This is a closed-book exam. You are not allowed to use molecular models, lecture notes, personal class notes, | | | | | | | | | | | | | | 2 | / 25 | | | | | | | | textbooks, and electronic copies of the above materials on mobile devices. Use the backs of the pages for scratch notes. | | | | | | | | | | | | | | | 3 | / 25 | | | | | | | | Honor Code: All students of the University of Colorado at Boulder are responsible for knowing and adhering to the | | | | | | | | | | | | | | | 4 | / 20 | | | | | | | | academic integrity policy of this institution. Violations of this policy may include: cheating, plagiarism, aid of academic dishonesty, fabrication, lying, bribery, and threatening behavior. | | | | | | | | | | | | | | | 5 | / 15 | | | | | | | | Students who are found to be in violation of the academic integrity policy will be subject to both academic sanctions from the faculty member and non-academic sanctions (including but | | | | | | | | | | | | | | | otal: | / 100 | | | | | | | not | limite | ed to u | inivers | sity pro | obatio | n, sus | pensi | on, or | expu | lsion). | | | | | | | hydrogen
1 | | | | 150 | 10- | 1.5 | | ē | 15 | (5.5) | 5.5 | 45 | 6.5 | | 65; | | | helium
2
He | | | | | | 1.0079
lithium
3
Li
6.941
sodium | Be
9,0122
magnesium | | | | | | | | | | | | boron
5
B | carbon
6
C
12.011 | nitrogen
7
N
14.007 | oxygen
8
O
15.999 | fluorine
9
F
18.998
chlorine | 10
Ne
20.180 | | | | | | sodium
11
Na
22.990 | Mg | | | | | | | | | | | | aluminium
13
AI
26.982 | silicon
14
Si | phosphorus
15
P
30.974 | sulfur
16
S | chlorine
17
CI
35.453 | 18
Ar | | | | | | potassium
19 | 24.305
calcium
20
Ca | | scandium
21
SC
44,956 | titanium
22
Ti
47.867 | vanadium
23
V
50,942 | chromium
24
Cr
51,996 | manganese
25
Mn
54.938 | Fe
55,845 | 27
Co
58,933 | nickel
28
Ni | copper
29
Cu | zinc
30
Zn | 31
Ga | germanium
32
Ge | arsenic
33
As
74.922 | 32.065
selenium
34
Se | 35
Br
79.904 | Krypton
36
Kr
83,80 | | | | | | 39.098
rubidium
37
Rb | strontium
38
Sr | | yttrium
39 | Zreonium
40
Zr | niobium
41
Nb | Mo | technetium
43
TC | ruthenium
44
Ru | rhodium
45
Rh | palladium
46
Pd | 63.546
silver
47
Ag | 65.39
cadmium
48
Cd | 69.723
Indium
49 | 72.61
tin
50
Sn | sntimony
51
Sb | 78.96
tellurium
52
Te | iodine
53 | 54
Xe | | | | | | 85.468
caesium
55
CS
132.91
francium
87 | 87.62
barium
56
Ba
137.33
radium
88 | 57-70
*
89-102 | 88,906
lutetium
71
Lu
174,97
lawrendum
103 | 91.224 hafnium 72 Hf 178.49 rutherfordium 104 | 92.906
tantalum
73
Ta
180.95
dubnium
105 | 95,94
tungsten
74
W
183,84
seaborgium
106 | [98] rhenium 75 Re 186.21 bohrium 107 | 101.07
osmium
76
OS
190.23
hassium
108 | 102.91
iridium
77
Ir
192.22
meitnerium
109 | 106.42 platinum 78 Pt 196.08 ununnilium 110 | 107.87
gold
79
Au
196.97
unununium
111 | 112.41
mercury
80
Hg
200.59
ununbium
112 | 114.82
thallium
81
T1
204.38 | 118.71
lead
82
Pb
207.2
ununquadium
114 | 121.76
bismuth
83
Bi
208.98 | polonium
84
Po
[209] | 126.90
astatine
85
At
[210] | 131.29
radon
86
Rn
[222] | | | | | | Fr [223] | Ra | * * | Lr [262] | Rf [261] | Db | Sg | Bh [264] | Hs
[269] | | | Uuu
[272] | | | Uuq
[289] | | | | | | | | | | | | | Ianthanum
57 | cerium
58 | praseodymium
59 | neodymium | promethium
61 | samarium | europium | gadolinium
64 | terbium
65 | dysprosium
66 | holmium
67 | erbium
68 | thulium
69 | ytterbium
70 | ľ | | | | | 151.96 157.25 americium 95 96 Am [243] [247] 158.93 berkelium 97 **Bk** oalfornium 98 Cf 164.93 167.26 168.93 einsteinium 99 100 101 ES FM Md 102 No **Actinide series uranium 92 [145] neptunium 93 Np plutonium 94 Pu ## 1. (a) At pH 2, the most likely structure of proline is: **(b)** Please draw the Haworth projection of the following sugar. Please assume that the most stable form is a pyranose (draw only α anomer). **(c)** Please circle only the thermodynamic enol. Hint: for each enol, consider the structure of the corresponding keto compound and all enols that can be formed. (d) For the following pair of structures, circle only those that are tautomers. (e) Which scheme is the correct representation of the aldol reaction? ## 2. Which reagents will accomplish the following transformations? (25 points) **3.** What are the major products in the following reactions? If you expect to obtain a mixture of isomers, indicate the major product. (25 points) 4. Please draw the product(s) and a reasonable mechanism for the following transformation. (20 points) - **5.** In the following questions, please circle only the correct answer(s): - (a) Among the following choices, the base(bases) that is(are) *not* suitable for enolization of methyl esters is(are): - (a) CH₃ONa - (b) LiOH - (c) LDA - (d) CH₃OLi - (e) CH₃OK - **(b)** In the Claisen condensation, the unstable tetrahedral intermediate is best shown as (please circle only one answer): - (b) OR - (c) HO OH O - (c) As compared to regular esters, β -ketoesters are: - (a) less acidic - (b) more acidic - (d) similar acidity - (e) depends on the base used - (d) In the following reaction, the expected product is going to have to following structure: - (a) NH - NH₂ - (c) NH₂ - (d) NH₂ - (e) Which of the following statements about acetals is incorrect: - (a) can be formed under acidic conditions; - (b) undergo reactions with organolithium reagents; - (c) can be hydrolyzed under acidic conditions; - (d) their formation is reversible