CHEM 3331, Professor M. Walczak, Spring 2015 First hour exam, February 10th, 2015 | Printed Name: | | | |-------------------|-------------|--| | Student ID: | | Recitation TA: | | Recitation Day ar | nd Time: | Signature: | | 1
2. | | This is a closed-book exam. You are not allowed to use molecular models, lecture notes, personal class notes, textbooks, and electronic copies of the above materials on | | 3 | | mobile devices. Use the backs of the pages for scratch notes. Honor Code: All students of the University of Colorado at Boulder are responsible for knowing and adhering to the goodenic integrity policy of this institution. Violations of this | | 4 | / 27 | academic integrity policy of this institution. Violations of this policy may include: cheating, plagiarism, aid of academic dishonesty, fabrication, lying, bribery, and threatening behavior. Students who are found to be in violation of the academic | | 5 | /13 | integrity policy will be subject to both academic sanctions from the faculty member and non-academic sanctions (including but not limited to university probation, suspension, or expulsion). | | Total: | / 100 | | | hydrogen
1 | g (500) | | | | | | | | | | | | | | | | | helium
2
He | |--------------------|---------------------|--------|--------------------|----------------------|--------------------|----------------------|----------------------|---------------------|-------------------|---------------------|------------------|------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------------| | 1.0079
lithium | beryllium | i | | | | | | | | | | | boron | earbon | nitrogen | 0101400 | fluorine | 4.0026
neon | | 3 | 4 | | | | | | | | | | | | 5 | 6 | 7 | oxygen
8 | 9 | 10 | | Li | Be | | | | | | | | | | | | B | C | N | 0 | F | Ne | | 6.941 | 9,0122 | | | | | | | | | | | | 10.811 | 12.011 | 14.007 | 15.999 | 18,998 | 20,180 | | sodium | magnesium | | | | | | | | | | | | aluminium | silicon | phosphorus | sulfur | chlorine | argon | | 11 | 12 | | | | | | | | | | | | 13 | 14 | 15 | 16 | 17 | 18 | | Na | Mg | | | | | | | | | | | | Al | Si | Р | S | CI | Ar | | 22.990 | 24.305 | | | | | | | | | | | | 26.982 | 28.086 | 30.974 | 32.065 | 35.453 | 39.948 | | potassium
19 | calcium
20 | | scandium
21 | titanium
22 | vanadium
23 | chromium
24 | manganese
25 | iron
26 | cobalt
27 | nickel
28 | copper
29 | zinc
30 | gallium
31 | germanium
32 | arsenic
33 | selenium
34 | bromine
35 | krypton
36 | | IZ. | | | | Τi | | | | | | | • | _ | | | | | | | | n | Ca | | Sc | | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | | 39.098
rubidium | 40.078
strontium | | 44.956
yttrium | 47.867
zirconium | 50.942
niobium | 51,996
molybdenum | 54.938
technetium | 55,845
ruthenium | 58,933
rhodium | 58.693
palladium | 63.546
silver | 65.39
cadmium | 69.723
indium | 72.61
tin | 74.922
antimony | 78,96
tellurium | 79.904
iodine | 83.80
xenon | | 37 | 38 | | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | | Rb | Sr | | Υ | Zr | Nb | Мо | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe | | 85.468
caesium | 87.62
barium | | 88.906
lutetium | 91,224
hafnium | 92.906
tantalum | 95.94
tungsten | [98]
rhenium | 101.07 | 102.91
iridium | 106.42
platinum | 107.87
gold | 112.41 | 114.82
thallium | 118.71
lead | 121.76
bismuth | 127.60
polonium | 126.90
astatine | 131.29
radon | | 55 | 56 | 57-70 | 71 | 72 | 73 | 74 | 75 | osmium
76 | 77 | 78 | 79 | mercury
80 | 81 | 82 | 83 | 84 | 85 | 86 | | Cs | Ba | * | Lu | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | TI | Pb | Bi | Po | At | Rn | | 132.91 | 137.33 | | 174.97 | 178.49 | 180.95 | 183.84 | 186.21 | 190.23 | 192.22 | 195.08 | 196.97 | 200.59 | 204.38 | 207.2 | 208.98 | [209] | [210] | [222] | | francium
87 | radium
88 | 89-102 | lawrencium
103 | rutherfordium
104 | dubnium
105 | seaborgium
106 | bohrium
107 | hassium
108 | meitnerium
109 | ununnilium
110 | unununium
111 | ununbium
112 | | ununquadium
114 | | | | | | Er | Ra | * * | 2,310,000 | Rf | Db | Sg | Bh | Hs | Mt | Hum | Uuu | | | Uuq | | | | | | | Nd | V X | Lr | | UD | Ju | | П | IVIL | oun | uuu | uub | | oud | | | | | | [223] | [226] | | [262] | [261] | [262] | [266] | [264] | [269] | [268] | [271] | [272] | [277] | | [289] | | | | | | * | La | nt | ha | ni | de | seri | es | |---|----|----|----|----|----|------|----| | | | | | | | | | ^{* *} Actinide series | | lanthanum
57 | cerium
58 | praseodymium
59 | neodymium
60 | promethium
61 | samarium
62 | europium
63 | gadolinium
64 | terbium
65 | dysprosium
66 | holmium
67 | erbium
68 | thulium
69 | ytterbium
70 | |-----|-----------------|--------------|--------------------|-----------------|------------------|----------------|----------------|------------------|---------------|------------------|---------------|--------------|---------------|-----------------| | ı | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Но | Er | Tm | Yb | | ı | 138.91 | 140.12 | 140.91 | 144.24 | [145] | 150.36 | 151.96 | 157.25 | 158.93 | 162.50 | 164.93 | 167.26 | 168.93 | 173.04 | | - [| actinium | thorium | protactinium | uranium | neptunium | plutonium | americium | curium | berkelium | californium | einsteinium | fermium | mendelevium | nobelium | | ı | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | | ı | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | | ı | [227] | 232.04 | 231.04 | 238.03 | [237] | [244] | [243] | 12471 | [247] | [251] | [252] | [257] | [258] | [259] | ## 1 (a) Please circle the compounds, which you expect to be aromatic. (b) Circle the compound, which is expected to be more stable. Provide a brief explanation for your choices. (i) (ii) (iii) or 2. (a) Please circle the compound, which will react *faster* with methyl acrylate. Provide a brief rationale for your choice. (b) Please predict the expected products in the following Diels-Alder reactions. Clearly indicate the stereochemistry of all relevant atoms. If a racemate is formed, show only one enantiomer. (iii) $$CO_2CH_3$$ $+$ CO_2CH_3 CO_2CH_3 ## 3. Please provide systematic names for the following compounds. Only one answer is correct. (a) (a) 3-iodoaniline (b) 5-iodophenol (c) 3-iodophenol (d) 5-iodoaniline (e) 5-iodoanisole (b) CH_3 (a) 2,4-dimethylaniline (b) 4,6-dimethylaniline (c) *m*-dimethylaniline (d) 2,4-dimethylanisole (e) 2,4-dimethyltoluene (c) (a) acylium ion (b) nitronium ion (c) nitrate ion (d) carbocation (e) nitrogen dioxide H_3C (d) (a) o-diphenylbenzene (b) *m*-diphenylbenzene (c) p-diphenybenzene (d) *m*-dibenzylbenzene (e) p-diphenylbenzyl 4. (a) For the following reactions, draw structures of the expected products. (i) (ii) (b) Propose reagents to complete the following reactions using the starting materials provided below. Note that you may require more than one step to complete the synthesis. 5. Please draw a detailed mechanism for the reduction of 2-butyne with Na/NH_3 . Please make sure you draw all important intermediates and use correct arrow notation to indicate the movement of electrons.