CHEM 3331 (Richardson) Midterm Exam 3 – Apr. 16, 2019

Your Name:	
Student ID:	
Recitation (check one)	O 149 (Thu 5:00 w/ Will)
O 130 (Wed 8:00 w/ Olivia)	O 235 (Wed 1:00 w/ Lauren)
O 134 (Wed 12:00 w/ Olivia)	O 237 (Wed 3:00 w/ Lauren)
O 136 (Wed 2:00 w/ Lacey)	O 239 (Wed 5:00 w/ Zepeng)
O 138 (Wed 4:00 w/ Lacey)	O 240 (Thu 8:00 w/ Zhenhao)
O 141 (Thu 9:00 w/ Chance)	O 242 (Thu 10:00 w/ Lauren)
O 143 (Thu 11:00 w/ Chance)	O 244 (Thu 12:00 w/ Lauren)
O 145 (Thu 1:00 w/ Lacey)	O 246 (Thu 2:00 w/ Brianna)
O 147 (Thu 3:00 w/ Will)	O 248 (Thu 4:00 w/ Brianna)

Question	Score	Out of
1		30
2		15
3		15
4		30
5		10
6		10 e.c.
Total		100

This is a closed-book exam. The use of notes, calculators, or cell phones will not be allowed during the exam. You may use models sets brought in a clear bag. Use the backs of the pages for scratch work. If your final answer is not clearly specified, you will lose points. For mechanisms, show all intermediates including correct formal charges, but do not show transition states.

IA 14	IA														VIIIA	
1	Periodic Table of the Elements													2		
Hydrogen 1.008	2 11A 2A				Atomic						13 IIIA 3A	14 IVA 4A	15 VA 5A	16 VIA 6A	17 VIIA 7A	He Helium 4.003
³ Li	^⁴ Be				Symbol					⁵B	°с П	⁷ N	۱o	۴F	¹⁰ Ne	
Lithium 6.941	Beryllium 9.012						- 1	Name Atomic Mass			Boron 10.811	Carbon 12.011	Nitrogen 14.007	Oxygen 15.999	Fluorine 18.998	Neon 20.180
11 Na Sodium 22.990	12 Mg Magnesium 24.305	3 IIIB 3B	4 IVB 4B	5 VB 58	6 7 VIB VIIB 68 78	8			11 IB 18	12 B 28	13 Aluminum 26.982	14 Silicon 28.086	15 P Phosphorus 30.974	16 S Sulfur 32.066	17 CI Chlorine 35.453	18 Ar Argon 39.948
19 K Potassium 39,098	20 Ca calcium 40.078	21 Scandium 44.956	22 Ti Titanium 47.88	23 V Vanadium 50.942	24 Chromium 51,996	26 F(CO obalt 58(833	29 CL Coppe (3.546	30 Zn 25.38	31 Gallium 69.723	32 Germanium 72,631	33 AS Arsonic 74.922	34 Se selenium 78.971	35 Br Bromine 79,504	36 Kr Krypton 84.798
37 Rb Rubidium 85.468	38 Sr Strontium 87.62	39 Y Yttrium 88.906	40 Zr Zirconium 91.224	41 Nb Niobium 92.906	42 Mo Molybdenum 95.95 43 Tc Technetiun 98.907	n 44 Ruthen 101.0	u 45 F P P 10	Rh odium 12.906	47 AC silver 107.86	48 Cd Cadmium 112.414	49 In Indium 114.818	50 Sn 118.711	51 Sb Antimony 121.760	52 Te Tellurium 127.6	53 lodine 126.904	54 Xe Xenon 131.294
55 CS Cesium 132.905	56 Ba Barium 137.328	57-71	72 Hf Hafnium 178.49	73 Ta Tantalum 180.948	74 W Tungsten 183.85 75 Re Rhenium 186.207	76 0 0smit 190.2	S 19 19	lr idium 22.22 78 Pt Platinum 195.08	79 AL Gold 196.96	80 Hg Mercury 200.59	81 TI Thallium 204.383	82 Pb Lead 207.2	83 Bi Bismuth 208.980	84 Polonium [208.982]	85 At Astatine 209.987	86 Rn Radon 222.018
87 Fr Francium 223.020	88 Ra Radium 226.025	89-103	104 Rf Rutherfordium [261]	105 Db Dubnium [262]	106 Sg Seaborgium [266] 107 Bh Bohrium [264]	108 Hassie [269		herium 268]	ium 111 Roentgen [280]	International In	113 Nh Nihonium [286]	114 Fl Flerovium [289]	115 Mc Moscovium [289]	116 LV Livermorium [293]	117 TS Tennessine [294]	118 Og Oganesson [294]
Lanthanide Series 57 La unitsansoft 58 Ce Hung 193.005 59 Pr (40.9008 60 Nd (194.02) 61 Pm (19.008 62 Sm (19.005 63 Eu (19.005 64 Gdd (adelsing) 65 Tb (19.25 66 Dy (19.25 68 Dy (19.25 68 Dy (19.25 68 Dy (19.25 68 Dy (19.25 69 Dy (19.24) 70 Tb (19.25 71 Dy (19.25 Lu (uterium (17.265 70 Dy (19.25 70 Dy (19.25 70 Dy (19.25 70 Dy (19.25 71 Dy (17.267 Lu (17.267 71 Dy (17.267 Lu (17.267 70 Dy (17.267 7											.u .967 .r					
pKa Values																
		I	II	-10	CH ₃ COC)H	4.7	ArO	H	10	HC	≡CH	26]		
		HBr -8 HN		HN ₃		4.7	RSI	I	10-12	H_2		35]			
		$HC1 -6 H_2S$			7.0	H ₂ C)	15.7	NH ₃		36					
		H_3O^+ -1.7 NH_4^+			9.3	RO	H	16-18	$H_2C=CH_2$		45					
		H	łF	3.2	HCN		9.4	O=C-	СН	9-25	C	H ₄	60			

1) Predict the major product of the following reactions. If no reaction occurs, then write NR. Do not show stereochemistry. If an aldol-type reaction occurs, assume it only occurs once and does not involve subsequent additions. (30 pts; 3 pts each)

2) Show how you would use an aldol or Claisen reaction to make each compound. (15 pts; 5 pts each)

3) The Wieland-Miescher ketone is an important precursor in the synthesis of many steroids and other compounds including Taxol (used to treat cancer). It is synthesized from methyl vinyl ketone and 2-methyl-1,3-cyclohexanedione by Robinson annulation. Draw the mechanism for its formation and the structure of the Wieland-Miescher ketone. (15 points)

4) Find a way to synthesize the desired product from the given starting material plus any other reagents containing at most six carbon atoms, or triphenylphosphine. (30 pts)

b.
$$\overset{OH}{\swarrow}$$
 \longrightarrow $\overset{OH}{\longleftarrow}$

5) Formaldehyde might look like an ideal electrophile for an aldol reaction – it cannot form an enolate and has a large partial positive charge. However, it is a little *too* reactive and is attacked by enolates too easily. If excess formaldehyde is present, the following reaction will take place. Show a mechanism for this reaction. (10 points)

6) Extra credit! Suggest a reasonable mechanism for this reaction. (10 points e.c.)

