CHEM 3331 (Richardson) Third Hour Exam - November 15, 2016

Score

100

Your Name			
Student ID			Question
Recitation	0	1:00 Monday w/ Thomas Carey	1
(check one)	0	2:00 Monday w/ Thomas Carey	2
	0	3:00 Monday w/ Matthew Farmer	3
	0	9:00 Tuesday w/ Ryan McCaffrey	4
			5
	0	11:00 Tuesday w/ Ryan McCaffrey	6
	0	1:00 Tuesday w/ Ryan McCaffrey	
	0	2:00 Tuesday w/ Patrick Nordeen	Total
	0	3:00 Tuesday w/ Matthew Farmer	

This is a closed-book exam. The use of notes, calculators, or cell phones will not be allowed during the exam. You may use models sets brought in a clear ziplock bag. Use the backs of the pages for scratch work. If your final answer is not clearly specified, you will lose points. For mechanisms, show all intermediates including correct formal charges, but do not show transition states.

1	_																18
1 H 1.008	2											13	14	15	16	17	2 He 4.0026
3 Li 6.94	4 Be 9.0122											5 B 10.81	6 C 12.011	7 N 14.007	8 O 15.999	9 F 18.998	10 Ne 20.180
11 Na 22.990	12 Mg 24.305	3	4	5	6	7	8	9	10	11	12	13 Al 26.982	14 Si 28.085	15 P 30.974	16 S 32.06	17 Cl 35.45	18 Ar 39.948
19 K 39.098	20 Ca 40.078	21 Sc 44.956	22 Ti 47.867	23 V 50.942	24 Cr 51.996	25 Mn 54.938	26 Fe 55.845	27 Co 58.933	28 Ni 58.693	29 Cu 63.546	30 Zn 65.38	31 Ga 69.723	32 Ge 72.630	33 As 74.922	34 Se 78.97	35 Br 79.904	36 Kr 83.798
37 Rb 85.468	38 Sr 87.62	39 Y 88.906	40 Zr 91.224	41 Nb 92.906	42 Mo 95.95	43 Tc (98)	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 I 126.90	54 Xe 131.29
55 Cs 132.91	56 Ba 137.33	57-71 *	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 Tl 204.38	82 Pb 207.2	83 Bi 208.98	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89-103 #	104 Rf (265)	105 Db (268)	106 Sg (271)	107 Bh (270)	108 Hs (277)	109 Mt (276)	110 Ds (281)	111 Rg (280)	112 Cn (285)	113 Nh (286)	114 Fl (289)	115 Mc (289)	116 Lv (293)	117 Ts (294)	118 Og (294)
	seri	ies	57 La 138.91	58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm (145)	62 Sm 150.36	63 Eu 151.96	64 Gd 157.25	65 Tb 158.93	66 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.05	71 Lu 174.97
	# Actir serie	nide s	89 Ac (227)	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)

HI	-10	CH ₃ COOH	4.7	Phenol	10	H ₂	35				
HBr	-8	HN ₃	4.7	RSH	10-12	NH ₃	36				
HC1	-6	H_2S	7.0	H ₂ O	15.7	$H_2C=CH_2$	45				
H_3O^+	-1.7	NH_4^+	9.3	Alcohol (ROH)	16-18	CH ₄	60				
HF	3.2	HCN	9.4	HC≡CH	26						

pKa Values

Page 2 of 5

1) Predict the product and show the mechanism for this reaction. (10 pts)

2) Suggest a reasonable mechanism for this reaction. (15 pts)

Page 3 of 5

3) Predict the major product of the following reactions. If no reaction occurs, then write NR. Do not show stereochemistry. If an aldol-type reaction occurs, assume it only occurs once and does not involve subsequent additions. (30 pts; 3 pts each)

a.
$$\begin{array}{c} O \\ OH \end{array} \xrightarrow{PrOH,} H_2SO_4 \end{array}$$
b.
$$\begin{array}{c} O \\ OH \end{array} \xrightarrow{OH} H_2SO_4 \end{array}$$
c.
$$\begin{array}{c} O \\ OH \end{array} \xrightarrow{OH} H_2SO_4 \end{array}$$
c.
$$\begin{array}{c} O \\ OH \end{array} \xrightarrow{OH} H_2SO_4 \end{array}$$
d.
$$\begin{array}{c} O \\ OH \end{array} \xrightarrow{OH} H_2SO_4 \end{array}$$
e.
$$\begin{array}{c} O \\ OH \end{array} \xrightarrow{OH} H_2SO_4 \end{array}$$
f.
$$\begin{array}{c} O \\ OH \end{array} \xrightarrow{OH} H_2SO_4 \end{array}$$
f.
$$\begin{array}{c} O \\ OH \end{array} \xrightarrow{Pr_2NH,} Pyridine \end{array}$$
f.
$$\begin{array}{c} O \\ OH \end{array} \xrightarrow{Pr_2NH,} Pyridine \end{array}$$
f.
$$\begin{array}{c} O \\ OH \end{array} \xrightarrow{OH} H_2SO_4 \end{array}$$
f.
$$\begin{array}{c} O \\ OH \end{array} \xrightarrow{Pr_2NH,} Pyridine \end{array}$$
f.
$$\begin{array}{c} O \\ OH \end{array} \xrightarrow{Pr_2NH,} Pyridine \end{array}$$
f.
$$\begin{array}{c} O \\ OH \end{array} \xrightarrow{Pr_2NH,} Pyridine \end{array}$$
f.
$$\begin{array}{c} O \\ OH \end{array} \xrightarrow{Pr_2NH,} Pyridine \end{array}$$
f.
$$\begin{array}{c} O \\ OH \end{array} \xrightarrow{Pr_2NH,} Pyridine \end{array}$$
f.
$$\begin{array}{c} O \\ OH \end{array} \xrightarrow{Pr_2NH,} Pyridine \end{array}$$
f.
$$\begin{array}{c} O \\ OH \end{array} \xrightarrow{Pr_2NH,} Pyridine \end{array}$$
f.
$$\begin{array}{c} O \\ OH \end{array} \xrightarrow{Pr_2NH,} Pyridine \end{array}$$
f.
$$\begin{array}{c} O \\ OH \end{array} \xrightarrow{Pr_2NH,} Pyridine \end{array}$$
f.
$$\begin{array}{c} O \\ OH \end{array} \xrightarrow{Pr_2NH,} Pyridine \end{array}$$
f.
$$\begin{array}{c} O \\ OH \end{array} \xrightarrow{Pr_2NH,} Pyridine \end{array}$$
f.
$$\begin{array}{c} O \\ OH \end{array} \xrightarrow{Pr_2NH,} Pyridine \end{array}$$
f.
$$\begin{array}{c} O \\ OH \end{array} \xrightarrow{Pr_2NH,} Pyridine \end{array}$$
f.
$$\begin{array}{c} O \\ OH \end{array} \xrightarrow{Pr_2NH,} Pyridine \end{array}$$
f.
$$\begin{array}{c} O \\ OH \end{array} \xrightarrow{Pr_2NH,} Pyridine \end{array}$$
f.
$$\begin{array}{c} O \\ OH \end{array} \xrightarrow{Pr_2NH,} Pyridine \end{array}$$
f.
$$\begin{array}{c} O \\ OH \end{array} \xrightarrow{Pr_2NH,} Pyridine \end{array}$$
f.
$$\begin{array}{c} O \\ OH \end{array} \xrightarrow{Pr_2NH,} Pyridine \end{array}$$
f.
$$\begin{array}{c} O \\ OH \end{array} \xrightarrow{Pr_2NH,} Pyridine \end{array}$$
f.
$$\begin{array}{c} O \\ OH \end{array} \xrightarrow{Pr_2NH,} Pyridine \end{array}$$
f.
$$\begin{array}{c} O \\ OH \end{array} \xrightarrow{Pr_2NH,} Pyridine \end{array}$$
f. \\\begin{array}{c} O \\ OH \end{array} \xrightarrow{Pr_2NH,} Pyridine \end{array}
f. \\\begin{array}{c} O \\ OH \end{array} \xrightarrow{Pr_2NH,} Pyridine \end{array}
f. \\\begin{array}{c} O \\ OH \end{array} \xrightarrow{Pr_2NH,} Pyridine \end{array}
f. \\\begin{array}{c} O \\ OH \end{array} \xrightarrow{Pr_2NH,} Pyridine \end{array}
f. \\\begin{array}{c} O \\ OH \end{array} \xrightarrow{Pr_2NH,} Pyridine \end{array}
f. \\\begin{array}{c} O \\ OH \end{array} \xrightarrow{Pr_2NH,} Pyridine \end{array}
f. \\\begin{array}{c} O \\ OH \end{array} \xrightarrow{Pr_2NH,} Pyridine \end{array}
f. \\\begin{array}{c} OH \\\overrightarrow{Pr_2NH,} Pyridine \end{array}
f. \\\begin{array}{c} OH \\\overrightarrow{Pr_2NH,} Pyridine \end{array}
f. \\\begin{array}{c} OH \\\overrightarrow{Pr_2NH,} Pyridine
f. \\\begin{array}{c} OH \\\overrightarrow{Pr_2NH,} Pyride
f. \\\begin{array}{c

Name_

4) Show how you would use an aldol or Claisen reaction to make each compound. (25 pts; 5 pts each)

Page 5 of 5

5) Find a way to synthesize the desired product from the given starting material plus any other reagents. If more than one step is necessary, show the product of each step. You do not need to show mechanisms. (20 pts; 10 pts each)

6) Extra credit! Find a way to perform this synthesis in three total steps. (10 pts e.c.)

