CHEM 3311 Dr. Minger

Please read and sign the Honor Code statement below:

I pledge that on my honor, as a University of Colorado at Boulder student, I have neither given nor received unauthorized assistance on this exam.

Signature

General Instructions: There are 25 questions. Be sure you have them all. Read each question carefully so that you know exactly what is being asked.

Each multiple choice question (1-25) is worth **4 points and has only one correct answer.** Bubble in your answers to these questions on the Scantron provided. **Only the Scantron will be graded, not anything that you write on the exam.**

At the end of the exam, turn in your Scantron and this signed cover sheet. You may keep the rest of the exam to check your answers against the key later.

Good luck!

1A	2A												ЗA	4A	5A	6A	7A	8A
hydrogen 1 H			10	i.	÷	÷	151	¢	Ċ		66		651		65.			^{helium} 2 He
lithium	beryllium	1											boron	carbon	nitrogen	oxygen	fluorine	neon 10
.	D _a												P	ĉ	ŇI.	Ô	9	No
LI	Бе												D	C	IN	U	Г	ne
6.941 sodium	9.0122 magnesium												10.811 aluminium	12.011 silicon	14.007 phosphorus	15.999 sulfur	chlorine	20.180 argon
11	12												13	14	15	16	17	18
Na	Mg												AI	Si	Ρ	S	CI	Ar
22.990 potossium	24.305 acloium		coondium	titanium	vanadium	abromium	mondonoso	iron	aobalt	niakol	ooppor	zine	26.982 acilium	28.086	30.974 arconia	32.065	35.453	39.948 kovotop
19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078		44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
rubidium 37	strontium 38		yttrium 30	zirconium 40	niobium 41	molybdenum 42	technetium	ruthenium	rhodium 45	palladium 46	silver 47	cadmium	indium 19	tin 50	antimony 51	tellurium 52	iodine 53	xenon 54
Dh	Sr.		v	Zr	Nh	Mo	To	Du	Dh	Dd	Aa	Cd	In	Sn	Sh	To		Va
RD	J		I	21	UN	OIVI	IC	RU	K II	гu	Ay	Cu		SII	30	Ie	100.00	ve
caesium	barium	0.0000000	lutetium	91.224 hafnium	tantalum	95.94 tungsten	rhenium	osmium	iridium	platinum	gold	mercury	thallium	118.71 lead	121.76 bismuth	polonium	astatine	131.29 radon
55	_56	57-70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TL	Pb	Bi	Po	At	Rn
132.91 francium	137.33		174.97 Iouropoium	178.49	180.95 dubnium	183.84 coaboraium	186.21 bobrium	190.23 bassium	192.22 moitharium	195.08	196.97	200.59	204.38	207.2	208.98	[209]	[210]	[222]
87	88	89-102	103	104	105	106	107	108	109	110	111	112		114				
Fr	Ra	* *	l r	Rf	Db	Sa	Bh	Hs	Mt	Uun	Uuu	Uub		Uua				
[223]	[226]		[262]	[261]	[262]	1266	[264]	[269]	[268]	[271]	[272]	[277]		[289]				
*l ont	honido	oorioo	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	folmium 67	erbium 68	69	ytterbium 70		
Lant	nanide	series	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Ho	Er	Tm	Yb		
			138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04		
* * ^ ^	inido o	orioo	actinium 80	thorium	protactinium Q1	uranium 02	neptunium 03	plutonium Q4	americium 95	curium 96	berkelium 97	californium 08	einsteinium 00	fermium 100	mendelevium 101	nobelium 102		
ACI	inde s	enes	A.c.	Th	De	32	Nim	D.	A 100	Cm	DL	CF	Ec	Eme	Mal	Ne		
			AC	In	Pa	U	ир	PU	AM	Cm	BK	UT	ES	rm.	IVID	NO		
			227	232.04	231.04	238.03	237	244	243	[247]	[247]	[251]	252	257	258	259		

1. Which of these compounds has an asymmetric carbon with an absolute configuration of *R*?

2. Which of these structures is achiral and meso?

3. Which side of this Bronsted-Lowry acid base reaction is favored at equilibrium? (Spectator ions are omitted for clarity.)

- a. Reactants (left side of equation)
- b. Products (right side of equation)
- c. Neither side is favored. There are equal amounts of reactants and products present at equilibrium.
- d. There is not enough information available to answer the question.
- 4. HF and HBr are both Bronsted acids. We have explored stabilization in the conjugate base to explain acidity. For this pair of acids, which of the following ideas is the best to explain which conjugate base is more stable?
 - a. Resonance
 - b. Electronegativity
 - c. Polarizability/Size
 - d. Luminescence
 - e. Hybridization

5. What is the approximate difference in energy between the two chair conformations of this molecule?

- a. 0.8 kcal/mol
- b. 1.6 kcal/mol
- c. 2.4 kcal/mol
- d. 3.2 kcal/mol

8.

- e. There is no energy difference between the two chair conformers.
- 6. Which of the following molecules is heptane?

7. Which of these alkenes releases the least amount of energy on formation from its elements (all substances in the standard state)?

9. Which of these compounds is chiral?

10. Select the correct statement about the set of stereoisomers that can be generated from this constitution.

- a. The set contains 4 chiral molecules
- b. The set contains 2 chiral molecules and 2 achiral molecules
- c. The set contains 2 chiral molecules and 1 achiral molecule
- d. The set contains 1 chiral molecule and 1 achiral molecule
- e. The set contains 2 achiral molecules
- 11. Use the table of energies provided to calculate the barrier to rotation around C1-C2 in 1-bromopropane.

Interaction	Energy (kcal/mol)
H-H eclipse	1.0
CH ₃ -H eclipse	1.3
Br-H eclipse	1.5
Br-CH₃ gauche	1.0
Br-CH ₃ eclipse	3.0
Br-CH ₃ anti	0

- a. 2.8 kcal/mol
- b. 3.8 kcal/mol
- c. 4.0 kcal/mol
- d. 5.0 kcal/mol
- e. None of these values

12. The frontier orbitals are the ones that interact in a chemical reaction. Which of these statements correctly identifies the frontier orbitals in this reaction? (The name of the carboxylic acid is propanoic acid.)

- HOMO: sp^2 on O in hydroxide a. LUMO: p on O in propanoic acid
- HOMO: sp^3 on O in hydroxide b. LUMO: p on O in propanoic acid
- HOMO: sp^3 on O in propanoic acid LUMO: sp^3 on O in hydroxide HOMO: sp^3 on O in hydroxide C.
- d. LUMO: O-H σ^* in propanoic acid
- None of these choices is correct e.
- 13. What is the correct IUPAC name for this molecule?

- 2-bromo-3,4,5-triethyl-6-methylheptane a.
- b. 2-bromo-3,4-diethyl-5-isopropylheptane
- 6-bromo-3,4,5-triethyl-2-methylheptane C.
- 6-bromo-4,5-diethyl-3-isopropylheptane d.
- None of these e.
- 14. Which of these compounds do you expect to have the lowest boiling point?

15. Place these three carbocations in order of *increasing* stability.

16. Which of the following is the *most stable staggered conformation* of 2-methylbutane, looking down the C2-C3 bond? (Me = Methyl, CH_3)

17. The carbon-carbon bonds in cyclopropane are described as

a. Grande Decaf Latte bonds

- b. New Mountain Berry Blast®[™] bonds
- c. X-Treem Mango Splash[™] bonds
- d. Banana bonds
- e. Bieberbonds

18. In this structure, what is the relationship between the groups P and M?

- gauche a.
- b. anti
- eclipsed C.
- none of these d.
- 19. Alkyl groups prefer to occupy equatorial bonds on cyclohexane rings to avoid the steric strain present in the axial conformer. However, in the structure shown below, the OH group prefers to occupy the axial position. One theory for this preference involves hyperconjugation. Recalling that hyperconjugation involves the interaction of a filled orbital and an empty orbital, what two orbitals are involved in this structure that would account for the preference of the OH group to be axial?

- Lone pair on O (sp^3) and O-H σ^* a.
- Lone pair on O (sp^3) and C-C σ b.
- C.
- Lone pair on O (sp^3) and p Lone pair on O (sp^3) and C-O σ^* d.
- C-H σ and O-H σ^* e.

20. Atenolol is a beta blocker used to treat high blood pressure. Which of the indicated H atoms, "A" or "B", is more acidic?

- a. A
- b. B
- c. They are equally acidic
- 21. Which statement correctly describes the relative base strengths of these three bases?

- a. G is the weakest base, F is the strongest base
- b. H is the weakest base, F is the strongest base
- c. F is the weakest base, H is the strongest base
- d. G is the weakest base, H is the strongest base
- e. H is the weakest base, G is the strongest base
- 22. Select the weakest acid from these choices.
 - a. H₂O
 - b. CH₄
 - c. NH₃
 - d. HBr
 - e. CH₃OH

23. Which of the following is a pair of diastereomers?

- a. P and R
- b. R and S
- c. P and S
- d. P and Q
- e. None of these combinations are diastereomers
- 24. What is the correct name for this molecule?

- a. (Z)-3-chloro-4-methyl-2-hexen-5-ol
- b. (*E*)-3-chloro-4-methyl-2-hexen-5-ol
- c. (Z)-5-chloro-3-methyl-4-hexen-2-ol
- d. (E)-5-chloro-3-methyl-4-hexen-2-ol
- e. None of these
- 25. Gas chromatography (GC) is an analytical tool that separates compounds based on their boiling points. Each compound that has a unique boiling point will generate one peak in the GC spectrum. You are using GC to analyze a mixture that contains equal parts of each of the four isomers of dimethylcyclopropane:

What is the maximum number of peaks that will appear in the GC spectrum? (Hint: You do not have to be taking the lab to answer this question.)

- a. None
- b. 1
- c. 2
- d. 3
- e. 4