Name:				
Name:				

- 1. (10 points) Circle ALL the correct statements:
- (i) In propyne, H₃C-C≡CH,
- A. the H-C-C bond angle involving carbon atoms 2 and 3 is 180°.
- B. the hybridization of carbon atoms 1, 2, and 3 are sp, sp, and sp³, respectively.
- C. there are three pi (π) bonds.
- D. The hydrogen atom on carbon 1 is acidic.
- (ii) The reaction of acetylene with $H_2(g)$ is shown below. Which statement(s) is (are) true concerning the reaction?

$$H-C=C-H + 2H_2 \xrightarrow{Pd(cat.)} H_3C-CH_3$$

- A. Acetylene is oxidized to ethane.
- B. Acetylene is reduced to ethane.
- C. Carbon changes oxidation state from -1 to -3.
- D. Hydrogen (from H₂) changes oxidation state from 0 to +1.
- 2. (10 points) When the weak acids H-OCN (cyanic acid) and H-NCO (isocyanic acid) ionize in aqueous solution, they produce the same anion. Write the Lewis dot structure for the anion formed, including a resonance form of this anion. You may use a line for each bonding pair of electrons, but show lone pairs and formal charges clearly.

Name:	

3. (10 points) Write structural formulas for all the constitutionally isomeric alkyl halides with the molecular formula C₄H₉Cl. Name each isomer according to substitutive IUPAC nomenclature.

Structure

IUPAC name (Substitutive nomenclature)

 (7 points) Name the functional groups (excluding alkyl groups) in the molecules shown below:

Diphenylhydramine (an antihistamine which relieves the symptoms of allergies: sneezing, itchy eyes, and runny nose)

그 보다 그리고 있었다. 경기를 하는 내 이 교리가 있다. 그리고 있는 그리고 있다면 하게 되었다고 있다는 것이 없었다.	taglandins act as mediators of hormone action. They
regulate smooth muscle ac	tivity, blood flow, and secretion of various substances)
	Q.
1	Соон
	CH ₃
Н	o OH
	erties of organic molecules can be explained on the basis
of their structures. Arrange below) in order of increas	the following compounds (in the space provided
nelow i in order or increas	mg boning bonn.
DERVIT, III OTBOT OT INCOMO	
	CH ₃ CH ₂ CH ₃ , CH ₃ CH ₂ OH , HOH ₂ C-CH ₂ OH
СН ₃ -О-СН ₃ ,	
СН ₃ -О-СН ₃ ,	CH ₃ CH ₂ CH ₃ , CH ₃ CH ₂ OH , HOH ₂ C-CH ₂ OH
CH_3 -O- CH_3 , For each compound, list th Compound	CH ₃ CH ₂ CH ₃ , CH ₃ CH ₂ OH, HOH ₂ C-CH ₂ OH are major intermolecular forces of attraction.
CH ₃ -O-CH ₃ , For each compound, list th	CH ₃ CH ₂ CH ₃ , CH ₃ CH ₂ OH, HOH ₂ C-CH ₂ OH are major intermolecular forces of attraction.
CH_3 -O- CH_3 , For each compound, list th Compound	CH ₃ CH ₂ CH ₃ , CH ₃ CH ₂ OH, HOH ₂ C-CH ₂ OH are major intermolecular forces of attraction.
CH ₃ -O-CH ₃ , For each compound, list th Compound CH ₃ -O-CH ₃	CH ₃ CH ₂ CH ₃ , CH ₃ CH ₂ OH, HOH ₂ C-CH ₂ OH are major intermolecular forces of attraction.
CH ₃ -O-CH ₃ , For each compound, list th Compound CH ₃ -O-CH ₃ CH ₃ CH ₂ CH ₃ CH ₃ CH ₂ OH	CH ₃ CH ₂ CH ₃ , CH ₃ CH ₂ OH, HOH ₂ C-CH ₂ OH are major intermolecular forces of attraction.
CH ₃ -O-CH ₃ , For each compound, list th Compound CH ₃ -O-CH ₃ CH ₃ CH ₂ CH ₃	CH ₃ CH ₂ CH ₃ , CH ₃ CH ₂ OH, HOH ₂ C-CH ₂ OH are major intermolecular forces of attraction.
CH ₃ -O-CH ₃ , For each compound, list th Compound CH ₃ -O-CH ₃ CH ₃ CH ₂ CH ₃ CH ₃ CH ₂ OH HOH ₂ C-CH ₂ OH	CH ₃ CH ₂ CH ₃ , CH ₃ CH ₂ OH, HOH ₂ C-CH ₂ OH are major intermolecular forces of attraction.
CH ₃ -O-CH ₃ , For each compound, list th Compound CH ₃ -O-CH ₃ CH ₃ CH ₂ CH ₃ CH ₃ CH ₂ OH	CH ₃ CH ₂ CH ₃ , CH ₃ CH ₂ OH, HOH ₂ C-CH ₂ OH are major intermolecular forces of attraction.
CH ₃ -O-CH ₃ , For each compound, list th Compound CH ₃ -O-CH ₃ CH ₃ CH ₂ CH ₃ CH ₃ CH ₂ OH HOH ₂ C-CH ₂ OH	CH ₃ CH ₂ CH ₃ , CH ₃ CH ₂ OH, HOH ₂ C-CH ₂ OH are major intermolecular forces of attraction.

	clobutane, cyclope dimethylcycloprop	ntane, cis-1,2-dimeth pane	ylcyclopropane, and
	<	<	<
Draw correct	structures for the	compounds listed abo	ove.
Methylcyclobut	tane Cyclopentane	cis-1,2-Dimethylcycle	·
	Manager and State of the State	cis-1,2-Dimethylcyclo	propane
7. (10 points)	Draw the followi	The same of the same same same same same same same sam	as:
7. (10 points)	Draw the followi	ng projection formula	propane as:
7. (10 points)	Draw the followi	ng projection formula	propane as:
7. (10 points)	Draw the followi	ng projection formula	propane as:
7. (10 points)	Draw the followi	ng projection formula	propane as:

Name:		
Tautic.		

(15 points) For each of the following pairs of compounds, indicate whether they
are constitutional isomers, stereoisomers, conformers (or rotamers), or different
compounds with different compositions.

a)
$$H_3C$$
 CH_3
 CH_3

Name: _____

9. (20 points) Draw the Newman projections for each 60° conformation between 0° and 360° and sketch an appropriate potential energy diagram for rotations about the C2-C3 bond in 2,3-dimethylbutane. Start at 0° with the lowest energy conformation, and show the conformations (and place appropriately in energy diagram) as you rotate clockwise in increments of 60°.