CHEM 3311 (Richardson) Third Hour Exam – Nov. 28, 2017 | Your Name: | | Question | Score | Out of | |-------------------------------|-------------------------------|----------|-------|---------| | | | 1 | | 10 | | Student ID: | | 2 | | 20 | | | | 3 | | 15 | | Recitation (check one) | O 1:00 Mon (Zhenhao Chen) | 4 | | 10 | | O 8:00 Tue (Rachel Weintraub) | O 11:00 Tue (Patrick Li) | 5 | | 15 | | O 2:00 Tue (Zhenhao Chen) | O 1:00 Wed (Zepeng Lei) | 6 | | 15 | | O 3:00 Wed (Rachel Weintraub) | O 9:00 Thu (Rachel Weintraub) | 7 | | 15 | | O 12:00 Thu (Patrick Li) | O 3:00 Thu (Zepeng Lei) | 8 | | 10 e.c. | | O 2:00 Fri (Rachel Weintraub) | O 3:00 Fri (Rachel Weintraub) | | | | | | | Total | | | | | | | | | This is a closed-book exam. The use of notes, calculators, or cell phones will not be allowed during the exam. You may use models sets brought in a clear ziplock bag. Use the backs of the pages for scratch work. If your final answer is not clearly specified, you will lose points. For mechanisms, show all intermediates including correct formal charges, but do not show transition states. | hydrogen
1
H
1.0079 | -4.5 | | | | | | | | | | | ************************************** | Mestry | 7045 | (952) | 10 | | helium
2
He
4.0026 | |------------------------------|---------------------|--------|--------------------|----------------------|--------------------|----------------------|----------------------|---------------------|-------------------|---------------------|------------------|--|--------------------|---------------------|--------------------|--------------------|--------------------|-----------------------------| | lithium
3 | beryllium
4 | | | | | | | | | | | | boron
5 | carbon
6 | nitrogen
7 | oxygen
8 | fluorine
9 | neon
10 | | Ľi | Be | | | | | | | | | | | | B | Č | N | Ô | F | Ne | | 6.941 | 9.0122 | | | | | | | | | | | - 1 | 10.811 | 12.011 | 14.007 | 15.999 | 18.998 | 20.180 | | sodium
11 | magnesium
12 | | | | | | | | | | | | aluminium
13 | silicon
14 | phosphorus
15 | sulfur
16 | chlorine
17 | argon
18 | | Na | Mg | | | | | | | | | | | | Al | Si | Р | S | CI | Ar | | 22.990
potassium | 24.305
calcium | | scandium | titanium | vanadium | chromium | manganese | iron | cobalt | nickel | copper | zinc | 26.982
gallium | 28.086
germanium | 30.974
arsenic | 32.065
selenium | 35.453
bromine | 39.948
krypton | | 19 | 20 | | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | | K | Ca | | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | | 39.098
rubidium | 40.078
strontium | | 44.956
yttrium | 47.867
zirconium | 50.942
niobium | 51.996
molybdenum | 54.938
technetium | 55.845
ruthenium | 58.933
rhodium | 58.693
palladium | 63,546
silver | 65.39
cadmium | 69.723
indium | 72.61
tin | 74.922
antimony | 78.96
tellurium | 79.904
iodine | 83.80 | | 37 | 38 | | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | xenon
54 | | Rb | Sr | | Υ | Zr | Nb | Мо | Тс | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | - 1 | Xe | | 85.468
caesium | 87.62
barium | | 88,906
lutetium | 91.224
hafnium | 92.906
tantalum | 95.94
tungsten | [98]
rhenium | 101.07
osmium | 102.91
iridium | 106.42
platinum | 107.87
gold | 112.41
mercury | 114.82
thallium | 118.71
lead | 121.76
bismuth | 127.60
polonium | 126.90
astatine | 131.29
radon | | 55 | 56 | 57-70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | | Cs | Ba | * | Lu | Hf | Ta | W | Re | Os | lr | Pt | Au | Hg | TI | Pb | Bi | Po | At | Rn | | 132.91 | 137.33 | | 174.97 | 178.49 | 180.95 | 183.84 | 186.21 | 190.23 | 192.22 | 195.08 | 196.97 | 200.59 | 204.38 | 207.2 | 208.98 | [209] | [210] | [222] | | francium
87 | radium
88 | 89-102 | lawrencium
103 | rutherfordium
104 | dubnium
105 | seaborgium
106 | bohrium
107 | hassium
108 | meitnerium
109 | ununnilium
110 | unununium
111 | ununblum
112 | | ununquadium
114 | | | | | | Fr | Ra | * * | Lr | Rf | Db | Sg | Bh | Hs | Mt | Uun | 1. 133553 | Uub | | Uuq | | | | | | [223] | [226] | | [262] | [261] | [262] | [266] | [264] | [269] | [268] | [271] | [272] | [277] | | [289] | | | | | *Lanthanide series * * Actinide series | lanthanum
57 | cerium
58 | praseodymium
59 | neodymium
60 | promethium
61 | samarium
62 | europium
63 | gadolinium
64 | terbium
65 | dysprosium
66 | holmium
67 | erbium
68 | thulium
69 | ytterbium
70 | |-----------------|---------------|--------------------|-----------------|------------------|-----------------|-----------------|------------------|-----------------|-------------------|-------------------|----------------|--------------------|-----------------| | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Но | Er | Tm | Yb | | 138.91 | 140.12 | 140.91 | 144.24 | [145] | 150.36 | 151.96 | 157.25 | 158.93 | 162.50 | 164.93 | 167.26 | 168.93 | 173.04 | | actinium
89 | thorium
90 | protactinium
91 | uranium
92 | neptunium
93 | plutonium
94 | americium
95 | curium
96 | berkelium
97 | californium
98 | einsteinium
99 | fermium
100 | mendelevium
101 | nobelium
102 | | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | | [227] | 232.04 | 231.04 | 238.03 | [237] | [244] | [243] | [247] | [247] | [251] | [252] | [257] | 12581 | [259] | pKa Values | HI | -10 | CH ₃ COOH | 4.7 | ArOH | 10 | H_2 | 35 | |----------|------|----------------------|-----|---------------|-------|-----------------|----| | HBr | -8 | HN_3 | 4.7 | RSH | 10-12 | NH_3 | 36 | | HCl | -6 | H_2S | 7.0 | H_2O | 15.7 | $H_2C=CH_2$ | 45 | | H_3O^+ | -1.7 | $\mathrm{NH_4}^+$ | 9.3 | ROH (R=alkyl) | 16-18 | CH ₄ | 60 | | HF | 3.2 | HCN | 9.4 | HC≡CH | 26 | | | - 1) Arrange these compounds in order of increasing solubility in water (1 = most soluble). In under ten words per compound, explain what properties of each compound are responsible for increasing its solubility. (10 pts) - a. Cyclohexanethiol - b. Cyclohexane - c. Cyclohexanol - d. Methoxycyclohexane - 2) Predict the products of the following reactions, and show reasonable mechanisms for each of them. Each of them forms a product of formula $C_8H_{16}O$. (20 pts) 3) For each of the following structures, show both chair conformations. (Make sure your bond angles clearly indicate whether each group is equatorial or axial.) Circle the more stable ringflip form for each molecule. (15 pts; 5 pts each) 4) Show the mechanism and product of the following reaction. (10 pts) 5) For each of the following pairs of reactions, circle the one that would be faster at E1 and explain why in under ten words. If both are equal, do not circle an option. (15 pts; 3 pts each) a. $$CI + DMF + Br^{-}$$ $CI + DMF + F^{-}$ b. $$CI + CH_3OH$$ + CH_3OH 6) For each of the reactions shown below, **circle the mechanism(s)** you would expect to see, if any, and **draw the product(s)**. If a product has stereocenters, show its configuration using wedges and dashes. If two stereoisomers are formed, show both of them. If an elimination occurs, show only the major alkene product. If none of the mechanisms would take place in a reasonable time frame, write NR for No Reaction. (15 pts; 3 pts each) a. $$\frac{\text{MeOH}}{\text{Br}}$$ $\frac{\text{E2}}{\text{E1}}$ $\frac{\text{S}_{\text{N}}2}{\text{E1}}$ b. $$\begin{array}{c|c} & PrONa \\ \hline Br & DMF \\ \end{array}$$ $$\begin{array}{c|c} E2 & S_N2 \\ \hline E1 & S_N1 \\ \end{array}$$ c. $$\begin{array}{c|c} & & & E2 & S_N2 \\ \hline & & & MeOH \\ \hline & & & E1 & S_N1 \\ \hline \end{array}$$ d. $$tBuONa$$ THF E2 S_N2 E1 S_N1 - 7) Each of these reactions can be done in a single step. On each arrow, show the reagents needed to accomplish each one. In each case, the target product should be the major product of the reaction. (15 pts 3 pts each) - a. OH - b. - c. OH - d. Br - 8) Extra credit! The Wurtz reaction, shown below, is capable of forming extremely strained bicyclic compounds. Show a reasonable mechanism for this reaction. Hint: sodium, Na, behaves similarly to lithium, Li. You do not have to show the mechanism for the formation of any organometallic species but you should show the mechanism for all other steps. (10 pts ec).