Experiment 12

Regiochemistry of Eliminations: Formation of a Cycloalkene Mixture

Study Questions

1) Show the mechanism for the formation of each of the three products expected in this experiment.

Answer:

Option 1:
$$OH_2$$

Option 2: OH_2

Option 2: OH_2

1-Methylcyclohexene

Option 3: OH_2

Methylenecyclohexane

2) Below are three alcohols. Which is dehydrated fastest and which slowest under reaction conditions similar to that given in the experiment above, and why?

Answer: The rate is determined by carbocation stability. The first alcohol shown makes a primary carbocation, so it's the slowest. The second makes a tertiary carbocation, so it's the fastest. The third makes a secondary carbocation, so it's intermediate.

- 3) If you took the product mixture from this reaction and ran it through a gas chromatograph, what would you expect to see in terms of relative peak areas and retention times?

 Answer: The boiling points of the products are 103°C for 3-methylcyclohexene, 110°C for 1-methylcyclohexene, and 103°C for methylenecyclohexane. Only two peaks should be visible since two of the products will overlap, but the second peak should be larger since 1-methylcyclohexene is the expected major product.
- 4) A student dehydrated 4-methylcyclohexanol with sulfuric acid. He found that the product mixture included three alkenes, shown below. Explain his results.

Experiment 12: Regiochemistry of Eliminations

Answer: The carbocation that forms initially can rearrange to give alkenes in multiple different locations.