CH	EM	3331
Dr.	Mir	nger

Please read and sign the Honor Code statement below:

I pledge that on my honor, as a University of Colorado at Boulder student, I have neither given nor received unauthorized assistance on this exam.

	Signature

General Instructions: There are 25 questions. Be sure you have them all. Read each question carefully so that you know exactly what is being asked.

Each multiple choice question (1-25) is worth 4 points and has only one correct answer. Bubble in your answers to these questions on the Scantron provided. Only the Scantron will be graded, not anything that you write on the exam.

At the end of the exam, turn in your Scantron and this signed cover sheet. You may keep the rest of the exam to check your answers against the key later. Grades will be uploaded to D2L.

Good luck!

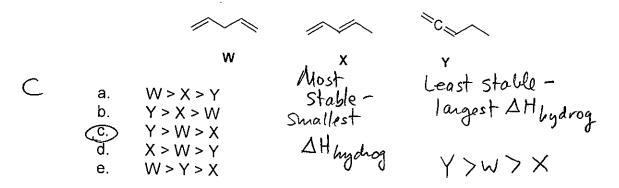
1A	2A												3A	4A	5A	6A	7A	8A
lip hogia	-			•		•		-										balum
H																		² He
1,00%																		10026
Minum 3	terylleni 4												toon 5	earton 6	ndrogen 7	(a)yjaji	flocativa	DECHI
Li	Be												B				9	10
6,941	9.0132												10.611	C	N	0	F	Ne
sodiin 11	magneskim 12	1											aluminten	12 011 slizm	14.007 phosphorus	15,090 Suffur	18,959 44km/s	20.180 argon
Na	Мg												13	14.	15	16	17	18
22.000	24,345												ΑI	Si	P	S	CI	Ar
ectassiun 19	eridum 20	1	s-siedom 21	14Linkina 20	sunadion:	circulum	mankgapos-	licei -	DIAGRO	(iii)	CONTRACT	700	25 592 gallum	demonani	30 974 (#\$40k)	32,005 Halkanluta	AS.453 Escinica	39 948 kryplon
K	_			22 T:	23	24	25 B.#	26	27	28	29	30	31	32	33	34	35	36
39998	Ca		Sc	Ti	٧	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
ruşêda)m	Ele)n(ium	1	ytirkum	47.867 2899nkim	503,842 ni-xisum	51.996 molybdenum	64,638 lectrostum	55.845 ruitenium	EE9.88 mult ceft	58.603 palletime	SASIS What	rs.as mulantes	69 773 Fichuns	/2.61	71 922 onlineny	28.95 telurum	79,968 8x8no	#3.60 ## #600
37	38		39 •	40	41	42	43	_44	45	_46	47	48	49	50	51	52	53	54
Rb	Sr		ı	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	ln	Sn	Sb	Te	1	Xe
ESAAA ITUHAKE	97.62 Porturn		88,996 futerum	91.224 fixinium	92.595 Limbbre	95.94 tungsten	LI VERSITATE ESSI	101.07 950MH	102,91 Indum	166.12 Halinum	107 A7	112-l1 matemy	114.82 Belliom	118 71 Nazd	121.76 brandh	127 do pokatkim	126,90	131 29
55	56	57-70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	astalino 85	54km 86
Cs	Ba	*	Lu	Hf	Ta	W	Re	Os	lir	Pt	Αu	Hg	TI	Pb	Bi	Po	At	Rn
132,91 Rancaum	137.33 radium		174.97 learnaun	178,49 naticator/ann	180,95 dubilism	183 94 9930 orgium	198.21 (satman	190.23 bassiim	192,22 Artifization	195,09 Unumética	190.97	200.50	204.38	207.2	209,94	[207]	12101	[222]
87	88	89-102	103	104	105	106	107	108	109	110	111	112		114				
Fr	Ra	* *	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Harri			Uuq				
_E23.	[226]	L	12871	[251]	120/1	126/3	[261]	1280	1,458)	[271]	3 ≥6	[27]		1280				
															•			

*Lanthanide series

** Actinide series

.	Landisarions 57	certum 5B	pro scotymus 59	neodymium 60	(634) Olitim	somonum 62	енгорыт 63	dalalılını 64	terbium 65	dysprosium 66	ticlinium 67	erblum 68	thulium 69	ysterosija 70
1	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Τ̈́b	Ďν	Но	Fr	Tm	٧'n
	138.95 aciqidan	148.12 Therium	146,51	141.21	[145]	155.30	151.96	157.75	159.93	162.56	164.93	157.26	169.93	173.64
	89	90	91	92	перыдіна 93	ptolonkim 94	arrisackus 95	96 muin	terreturu 97	0.00 (A)	elasterera 99	100	aren;∺aezaan 101	102
	Ac	Th	Pa	U	αЙ	Pu	Am	Cm	Bk	Cf	Es	Fm	Мd	No
ı	020	232.04	231,04	239,03	[23,7]	1244	1243	[247]	1247	(251)	175/7	12671	1258	1253

1. The description "1,3" refers to


Conjugate addition 1,4

b. Direct addition 1,2

Electrophilic addition of HBr to a diene 1,2 or 1,4

d. A minor or unobserved product of a Diels Alder reaction All of the above

2. Place the three dienes in order of decreasing $\Delta H_{\text{hydrogenation}}$ (largest ΔH to smallest ΔH).

3. 7-Bromo-1,3,5-cycloheptatriene dissolves rapidly in water, ionizing to form an ion pair: the tropylium ion and a bromide ion:

7-bromo-1,3,5-cycloheptatriene

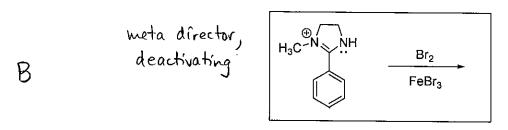
E

Tropylium ion

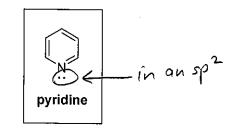
The tropylium ion forms much more rapidly than most carbocations. According to the Hammond postulate, the transition state for the tropylium ion is stabilized by the same factors that stabilize the ion itself. What is the best explanation for the stability of the tropylium ion?

- a. The tropylium ion contains conjugation. The but not best explanation
- b. The tropylium ion is an allylic carbocation.
- c. The tropylium ion is antiaromatic. False
- d. The tropylium ion is benzylic. False
- The tropylium ion is aromatic.

For questions 4 through 8, select the best reagent from the list to accomplish the transformation. Assume that there is an aqueous acid workup (H_3O^+) following the use of each reagent. Choices may be used once, more than once, or not at all.


- a. MeLi
- b. MeMgBr
- c. Me₂CuLi
- d. Any of these reagents could accomplish the transformation
- e. None of these reagents could accomplish the transformation

LAH or NaBHy


9. Which of these drawings is the correct Frost circle for furan?

B G D

10. Select the major product of this reaction.

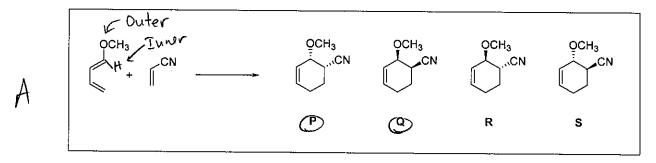
11. How many electrons are in the π system in pyridine?

a. 2 b. 4 c. 6 d. 8

e. None of these

12. From which of the following structures can the target alcohol *not* be made in one synthetic operation, including aqueous workup?

A


OH

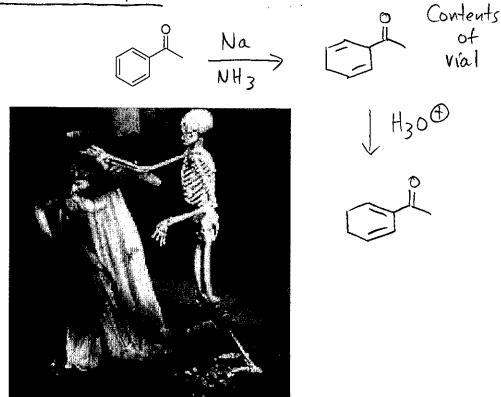
$$2. H_30$$
 $2. H_20_2$
 $1. BH_3. THF$
 $2. H_20_2$
 $1. BH_3. THF$
 $2. H_20_2$
 $2. H_$

13. A ketone is treated with a chiral Grignard reagent as shown in the reaction in the box. Select the phrase that best describes the product(s) of the reaction.

Since there is optical activity in the storting materials, we expect optical activity in the product(s).

- a. A single achiral molecule
- b. A single chiral molecule
- c. Racemic mixture (enantiomers in equal amounts)
- d. Diastereomers in unequal amounts
- e. Diastereomers in equal amounts

Endo = Dienophile group is cis to outer substituent of diene Which of these are endo products?

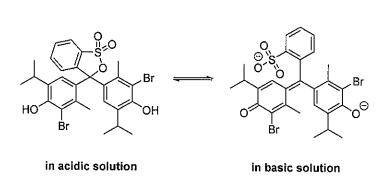

- P and Q
- P and R
- Q and S C.
- d. Q and R
- R and S e.
- 15. Which of the compounds shown would not be expected to form under the reaction conditions?

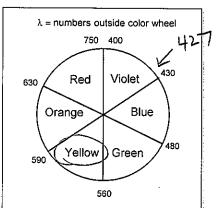
NBS B mixture of AIBN, CCI4 products heat All these products would form Е

Which of these compounds will react fastest with methyllithium in diethyl 16. ether solvent?

B Α E

Aldehydes are more electrophilic than ketones or esters




After several minutes of evil cackling, the skeleton takes a sample of the solution in the vat and returns to its laboratory, where it extracts the aqueous solution and isolates an organic compound. Which of the following compounds does the skeleton isolate?

Bromothymol sulfone phthalein (also known as "BTB") is an acid-base indicator that is commonly used to test the pH of swimming pools and fish tanks. In acidic solution, its maximum absorbance (λ_{max}) is around 427 nm, and in basic solution its λ_{max} is 602 nm. The skeleton in question 17 puts on its goggles and adds some BTB to the vat of aqueous acid (sulfuric acid and water). What color is the aqueous solution in the vat?

a. (b.)	Red Yellow	We	see	the	color	opposite	the	absorbed	Amax.
------------	---------------	----	-----	-----	-------	----------	-----	----------	-------

- ற*்.)* Yellow c. Green
- d. Violet
- e. Blue

19. Which of the following events is responsible for causing the transmission of a visual signal to the brain?

 \mathcal{T}

- a. Retinol is transformed enzymatically into 11-cis-retinal.
- b. Carrots are eaten and β -carotene is absorbed by the body.
- c. 11-Cis-retinal binds to opsin via a Schiff base linkage.
- d. Rhodopsin absorbs a photon and 11-cis-retinal isomerizes to 11-trans-retinal.
 - e. A lysine residue detaches from the protein opsin.
- 20. Which of these structures is the electrophile in the nitration of benzene?

Questions 21, 22, and 23 refer to the following data from the nitration of anisole and nitrobenzene. Percentages under each product refer to the relative amounts of each product recovered at the end of the reaction.

OCH₃
$$HNO_3/H_2SO_4$$
 OCH_3 OCH_3

21. The nitration of anisole proceeds at about room temperature, yet the nitration of nitrobenzene requires harsher conditions (much higher temperature). The most likely reason for this result is:

The OCH3 group on anisole is an ortho, para director. True, but not the reason The ring in anisole is described.

- b. The ring in anisole is deactivated False
- The OCH₃ group withdraws electron density from the ring by an C. inductive effect True, but not the reason
- The ring in nitrobenzene is deactivated

B

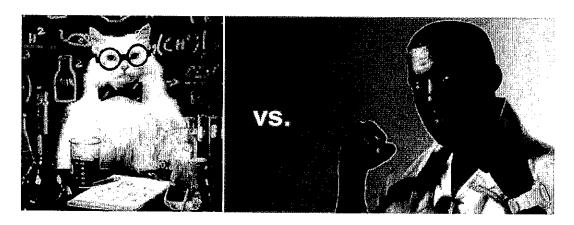
- The nitro group donates electron density to the ring by resonance Folse
- 22. What is the best explanation for the formation of the major product in the nitration of nitrobenzene?

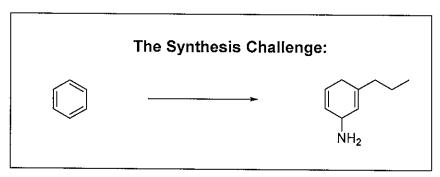
The nitro group deactivates the ring toward electrophilic aromatic a. substitution. The, but not the correct explanation

- (b.) In the rate limiting step, the carbocation intermediate in the ortho and para pathways is destabilized, but in the meta pathway it is not; thus, the meta product forms faster True
 - The formation of the electrophile is slowed by the presence of the C. nitro group already on the ring in nitrobenzene False
 - d. Resonance structures of nitrobenzene place negative charge on the ring carbons at the meta positions False

- 23. Which of the following statements about the nitration of anisole is true?
 - (a.) Both ortho and para products form preferentially, but the para product is favored because of steric hindrance at the ortho position. Two
 - The meta product forms preferentially because the pathway for b. meta attack has the most stable carbocation intermediate in the rate-limiting step. False
 - The meta product is favored because the nitro group is electron-C. withdrawing and a meta director. NOz group is electron-
 - d. withdrawing and a meta director. Same reasoning as "c"
- 24. The Diels Alder reaction of furan and maleic anhydride can provide two products, J and K, as shown here:

The reactants are combined in acetonitrile solution at 40°C. Initially, a small amount of product J forms and no K is observed. After about 20 minutes, the concentrations of J and K are the same. After that, the concentration of K increases and the concentration of J decreases. After 48 hours, the only product in solution is K.


Select the true statement(s) about this reaction.


- 1 J is the kinetic product.
- J is the thermodynamic product. XII.
- MII. K is more stable than J.
- I and III

B

- II and III
- None of the statements are true

25. Kanye West has challenged the Chemistry Cat to a Synthesis Showdown!

Contest rules state that each step in the synthesis must provide the desired/proposed product of that step as the major product. The winner is the one who has more correct steps. The contestants' proposed syntheses are shown on the next page.

Who wins the contest?

- a. Kanye wins. The Chemistry Cat's synthesis has between 1 and 3 steps that would not work as proposed.
- b. The Chemistry Cat wins. Kanye's synthesis has between 1 and 3 steps that would not work as proposed.
- c. Kanye wins. The Chemistry Cat's synthesis has 4 to 5 steps that would not work as proposed.
- The Chemistry Cat wins. Kanye's synthesis has 4 to 5 steps that would not work as proposed.
- e. Neither the Chemistry Cat nor Kanye wins. They have an equal number of incorrect steps in their proposed syntheses.

Syntheses for Question 25:

1,3 diene