CH	EM	3331
Dr.	Mir	nger

Please read and sign the Honor Code statement below:

I pledge that on my honor, as a University of Colorado at Boulder student, I have neither given nor received unauthorized assistance on this exam.

	Signature

General Instructions: There are 25 questions. Be sure you have them all. Read each question carefully so that you know exactly what is being asked.

Each multiple choice question (1-25) is worth 4 points and has only one correct answer. Bubble in your answers to these questions on the Scantron provided. Only the Scantron will be graded, not anything that you write on the exam.

At the end of the exam, turn in your Scantron and this signed cover sheet. You may keep the rest of the exam to check your answers against the key later. Grades will be uploaded to D2L.

Good luck!

1A	2A												3A	4A	5A	6A	7A	A8
H	-		•	•	•	•		•	٠	••			•		••			He
Li	Be												5	Gartin 6	7		9	10
4341	2,72												B	C	2	0	F	Ne
11	12												13	14	ileachean 18	16	17	7900 83
Na	Mg	ŀ											Al	Si	P	S	CI	Ar
19	29		21	22	23	24	25	26	27	20	29 29	/m: 30	31	35	33	34	trumbs 35	Vinta 36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	****		19 m	/50 vmen	41	42	39 000 143	****	Aiba	94.500 48	47	48	tohan 49	77 th	14 W/ 1944	- C.	11554 11554 125	63 BY
Rb	Sr		Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Äg	Cd	l'n	Sn	Sb	Te	ĩ	Хе
75 444 (34445)) 55	ienzu SS	87-70	Mireum 71	halraun 72	undatum T3	WODIN 74	firsten 75	114 el 11460 76	107 91 Stdame 77	Magnetia Magnetia	WY RI	11/ (1	Saleses	11=70 6w)	321 76 benevan	177 des pello militario	126,60) 016,600	121.0
Cs	Ba	*	Lu	Hf	Ta	Ŵ	Re	Ős	ľr	Pt	Au	Hg	"i	Pb	Bi	Po	05 A 4	E6
132.M	142		1/4.9/	IN V.	\$100 \$5 \$16 7060	10304	144.71	100 J) Reprepa	157.77	195 04	Tri-tri	230.70	24.55	242.7	7474	21	At	Rn
67	m	69-102	103	104	105	106	107	108	109	110	111	112		114				
Fr	Ra	* *	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun				Uuq				
									<u> </u>	1HER	W/3_	1115	1	29	ı			
			Ciril and		·													

*Lanthanide series

' 'Actinide series

ı	LINE-MAN .	Contrago .	Ing-residence		Introduction	A WINDS	011-0-000	-Leftsteine	- Marie and -	-	Prepare	-day	THE PART	
: 1	57	58	59	60	81	62	63	64	65	66	67	63	69	70
1	1 2	Ce		Nd	D	ا ۔۔۔ ا		اهتما						
1	La	Le	76	ING	ı PM	Sm	Eu	l Gd l	l lb	l Dv l	l Hal	Fr	Tm	Yh
-1	139 91	. Hy 12	16041	14121	1112	124.76	151 %	120	154.91					
Г	1	Print de	perdactore on	of Assess	Ord dates	24466	.010-17-000	0446	PONT	1477	(64 m)	10%	1(9.21	17344
- 1	89	69	91	92	93	94	95	G8	97				anceldco.	
	A - I	i								C#	89	100	101	102
ı	AC I	ın	l Pa l	u	aN l	Pu	Am	Cm	Bk	Cf	Fe	Fm	Mal	M-
-1	1220								ו אכון		E 5		I IVI Q	ION
٠.		70 M	231.94	435.71	ย์เล	L/144		L L L L L L L L L L L L L L L L L L L	1710	164	1949	F.4 W		

1. Select the structure that is the enol of a ketone.

2. Here are two multi-step syntheses:

In which of these synthetic pathways would you use sodium ethoxide?

- a. Synthesis of Target Ab. Synthesis of Target B
- c. Both syntheses

Α

- d. Neither synthesis
- 3. Which statement best describes one of the chemical (mechanistic) roles of NH₃ in the dissolving metal reduction of an alkyne?

a It donates a proton to a radical anion
b. It donates an electron to a sodium cation

- c. It donates a pair of electrons to the alkyne
 d. It is a nucleophilic source of hydride ion, H: , which reduces the alkyne
- 4. The keto and enol forms of a carbonyl compound are related as tautomers. Tautomers are
- a. Stereoisomers
 b. Constitutional isomers
 c. Different conformations of the same molecule
 d. None of the above

For questions 5 through 9, use the following list to identify the reagent(s) that you would use to accomplish each transformation in one synthetic operation (includes workup). Choices may be used more than once, or not at all. (Assume that the appropriate workup follows each of the choices "a" through "d".)

- a. PCC
- b. CH₃I (methyl iodide)
- c. H₂/Lindlar catalyst
- d. TsCl/pyr
- e. Can't be accomplished in one operation using any of these choices

For questions 10 through 14, select the best reagent from the list. Assume appropriate aqueous workup after all reactions. Choices may be used more than once, or not at all.

- a. Only NaBH₄ would work
- b. Only LAH would work
- c. Either NaBH₄ or LAH would work
- d. H_2/Pd
- e. H₂/Raney Ni

10.

11.

12.

13.

$$\stackrel{\circ}{\longrightarrow}$$
 $\stackrel{\circ}{\longrightarrow}$ $\stackrel{\circ}{\longrightarrow}$

14.

- 15. Which of the following requires 2 equivalents of a Grignard reagent (followed by aqueous acid) to produce a **tertiary alcohol**?
- C HHH CO D E
 - 16. You need to make a primary alcohol. Which of the following methods would <u>not</u> work?

A
$$\frac{1}{100}$$
 H + NaH, then H₃O⁺
NON-nucleophilic - does not reduce C=O

OK B + BH₃-THF, then H₂O₂/NaOH/H₂O \rightarrow OH

OK C H + CH₃MgBr, then H₃O⁺ \rightarrow HO

All three methods would work

None of these methods would work

17. A certain compound can be synthesized from the vicinal dibromide shown in one synthetic operation. This same compound can then be used to synthesize the aldehyde at the right in one synthetic operation. What is the structure of the compound?

Br Pr ? [1. Sia 2 B# 2. H2 O2, HOO 0 H

18. From which of these compounds can the target ketone NOT be made in one synthetic operation (including workup)?

Hydration of "D"

would give

which is
not the
can be made
from any of
these compounds
in one synthetic step

A

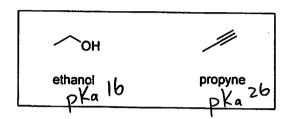
B

C

D

Hydration of "D"

which is
not the

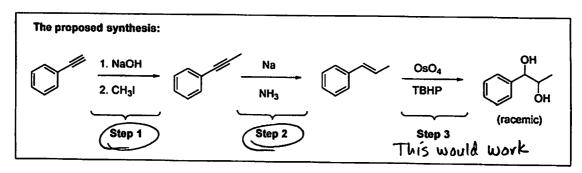

19. A molecule called rhynchophorol is a aggregation pheromone of the American palm weevil. Aggregation pheromones are involved in assembling groups of insects in one location. The organizers of the popular weevil music festival "Burning Weevil" are interested in attracting throngs of concertgoers by synthesizing rhynchophorol. They will use a reaction between a Grignard or organolithium reagent and a carbonyl compound. What type of carbonyl compound will they use?

20. Select the structure that is a mechanistic intermediate in the tautomerization of this aldehyde in aqueous acid.

An ester

For questions 21, 22, 23, and 24: "Quantitative deprotonation" means that essentially 100% of your starting material (the acid) is deprotonated by a base. Assume that an acid will be quantitatively deprotonated if the equilibrium constant for the reaction, K, is 10^5 or greater.

Consider the following pair of compounds and select the appropriate statement from this list for each base in questions 21-24. Some of the base structures are shown.



- a. Quantitatively deprotonates ethanol AND propyne
- b. Quantitatively deprotonates neither ethanol nor propyne
- c. Quantitatively deprotonates ethanol, but not propyne
- d. Quantitatively deprotonates propyne, but not ethanol

B 24. Potassium tert-butoxide

25. In April, a judge in Argentina issued an arrest warrant for Justin Bieber based on his alleged involvement in an altercation in a Buenos Aires nightclub in 2013. The arrest warrant also states that Bieber is to be charged with designing a multistep synthesis that has at least one incorrect step. This type of chemical negligence is taken quite seriously in Argentina and is punishable with life imprisonment in solitary confinement.

The multistep synthesis proposed by Bieber is the following:

According to the judge, Bieber "designed a synthesis that has at least one step that would not work, or that would give other undesired products". To which step(s) is the judge referring?

- a. Step 1
- b. Step 2
- c. Step 3
- -> d. Steps 1 and 2
 - e. Steps 1, 2 and 3

Step 1: Na OH is not a Strong enough base to deprotonate the terminal alkyne.

Step 2: Na, NH3, dissolving metal reduction conditions, will also cause benzene to react.