CHEM 3331 (Richardson) First Midterm Exam – Feb. 13, 2018 | Your Name: | | Question | Score | Out of | |-------------------------------|-------------------------------|----------|-------|---------| | | | 1 | | 15 | | Student ID: | | 2 | | 15 | | | | 3 | | 15 | | Recitation (check one) | O 8:00 Wed (Rachel Weintraub) | 4 | | 10 | | O 12:00 Wed (Patrick Li) | O 2:00 Wed (Patrick Li) | 5 | | 30 | | O 4:00 Wed (Michael Ortiz) | O 9:00 Thu (Josh Kamps) | 6 | | 15 | | O 11:00 Thu (Josh Kamps) | O 1:00 Thu (Aaron Hinds) | 7 | | 10 e.c. | | O 3:00 Thu (Rachel Weintraub) | O 5:00 Thu (Rachel Weintraub) | | | | | | | Total | | 100 | | | | | | | This is a closed-book exam. The use of notes, calculators, or cell phones will not be allowed during the exam. You may use models sets brought in a clear ziplock bag. Use the backs of the pages for scratch work. If your final answer is not clearly specified, you will lose points. For mechanisms, show all intermediates including correct formal charges, but do not show transition states. | hydrogen
1
H
1.0079 | | | | | | | | | | | | | | | | | | helium
2
He
4,0026 | |------------------------------|-----------------|--------|-------------------|----------------------|----------------|-------------------|------------------|-----------------|-------------------|-------------------|------------------|-----------------|----------------|--------------------|----------------------|------------------|----------------|------------------------------------| | lithium
3 | beryllium | | | | | | | | | | | I | boron
5 | carbon
6 | nitrogen
7 | oxygen
8 | fluorine
9 | neon
10 | | Ľi | Be | | | | | | | | | | | | B | 0 | Ń | ô | F | Ne | | | 9.0122 | | | | | | | | | | | | 10.811 | C | | | 18.998 | | | 6.941
sodium | magnesium | | | | | | | | | | | ŀ | aluminium | 12.011
silicon | 14.007
phosphorus | 15.999
sulfur | chlorine | 20,180
argon | | 11 | 12 | | | | | | | | | | | | 13 | 14 | 15 | 16 | 17 | 18 | | Na | Mg | | | | | | | | | | | | Al | Si | Р | S | CI | Ar | | 22.990 | 24.305 | | | | | | | | | | | | 26.982 | 28.086 | 30.974 | 32.065 | 35.453 | 39.948 | | potassium
19 | calcium
20 | | scandium
21 | titanium
22 | vanadium
23 | chromium
24 | manganese
25 | iron
26 | cobalt
27 | nickel
28 | copper
29 | zinc
30 | gallium
31 | germanium
32 | arsenic
33 | selenium
34 | bromine
35 | krypton
36 | | K | Ca | | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | | 39.098 | 40.078 | | 44.956 | 47.867 | 50.942 | 51.996 | 54.938 | 55.845 | 58.933 | 58.693 | 63,546 | 65.39 | 69.723 | 72.61 | 74.922 | 78.96 | 79.904 | 83.80 | | rubidium
37 | strontium
38 | | yttrium
39 | zirconium
40 | niobium
41 | molybdenum
42 | technetium
43 | ruthenium
44 | rhodium
45 | palladium
46 | silver
47 | cadmium
48 | indium
49 | 50 | antimony
51 | tellurium
52 | iodine
53 | xenon
54 | | | | | v | | | 1921/04/1911 | 1 | 20.000 | 1 YE 13 AV | C.C. 1000 | | (42.57.585) | | 27 | | | 33 | | | Rb | Sr | | Y | Zr | Nb | Мо | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | | Xe | | 85.468 | 87.62 | | 88.906 | 91.224 | 92.906 | 95.94 | [98] | 101.07 | 102.91 | 106.42 | 107.87 | 112.41 | 114.82 | 118,71 | 121.76 | 127.60 | 126.90 | 131.29 | | caesium
55 | barium
56 | 57-70 | lutetium
71 | hafnium
72 | tantalum
73 | tungsten
74 | rhenium
75 | osmium
76 | iridium
77 | platinum
78 | gold
79 | mercury
80 | thallium
81 | lead
82 | bismuth
83 | polonium
84 | astatine
85 | radon
86 | | Cs | Ba | * | Lu | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | TI | Pb | Bi | Po | At | Rn | | 132.91 | 137.33 | | 174.97 | 178.49 | 180.95 | 183.84 | 186.21 | 190.23 | 192.22 | 195.08 | 196.97 | 200.59 | 204.38 | 207.2 | 208.98 | [209] | [210] | [222] | | francium
87 | radium
88 | 89-102 | lawrencium
103 | rutherfordium
104 | dubnium
105 | seaborgium
106 | bohrium
107 | hassium
108 | meitnerium
109 | ununnilium
110 | unununium
111 | ununblum
112 | | ununquadium
114 | | | | | | ۴r | Ra | * * | Lr | Rf | Db | | Bh | Hs | Mt | Him | 10000000 | Uub | | Uuq | | | | | | | | /\ ./\ | | | | Sg | | | | Guii | | | | | | | | | | [223] | [226] | | [262] | [261] | [262] | [266] | [264] | [269] | [268] | [271] | [272] | [277] | | [289] | | | | | *Lanthanide series * * Actinide series | lanthanum
57 | cerium
58 | praseodymium
59 | neodymium
60 | promethium
61 | samarium
62 | europium
63 | gadolinium
64 | terbium
65 | dysprosium
66 | holmium
67 | erbium
68 | thulium
69 | ytterbium
70 | |-----------------|---------------|--------------------|-----------------|------------------|-----------------|-----------------|------------------|-----------------|-------------------|-------------------|----------------|--------------------|-----------------| | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Но | Er | Tm | Yb | | 138.91 | 140.12 | 140.91 | 144.24 | [145] | 150.36 | 151.96 | 157.25 | 158.93 | 162.50 | 164.93 | 167.26 | 168.93 | 173.04 | | actinium
89 | thorium
90 | protactinium
91 | uranium
92 | neptunium
93 | plutonium
94 | americium
95 | curium
96 | berkelium
97 | californium
98 | einsteinium
99 | fermium
100 | mendelevium
101 | nobelium
102 | | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | | [227] | 232.04 | 231.04 | 238.03 | [237] | [244] | [243] | [247] | [247] | [251] | [252] | [257] | [258] | [259] | pKa Values | HI | -10 | CH ₃ COOH | 4.7 | ArOH | 10 | H_2 | 35 | |----------|------|----------------------|-----|------------------|-------|----------------------------------|----| | HBr | -8 | HN ₃ | 4.7 | RSH | 10-12 | NH ₃ | 36 | | HCl | -6 | H ₂ S | 7.0 | H ₂ O | 15.7 | H ₂ C=CH ₂ | 45 | | H_3O^+ | -1.7 | $\mathrm{NH_4}^+$ | 9.3 | ROH (R=alkyl) | 16-18 | CH ₄ | 60 | | HF | 3.2 | HCN | 9.4 | НС≡СН | 26 | | | 1) Patchouli oil, or patchoulol, is responsible for the smell of many types of incense and also hippies. In addition, it is used as a precursor to the chemotherapy drug Taxol. Patchoulol can be synthesized from the precursor shown below. (15 pts total) a. There are two steps in this synthesis: one generates a new ring, and the other changes a functional group. Show the mechanism for the ring formation step. You don't have to show the 3d shape perfectly – just focus on correct connectivity. (10 pts) b. What reagents are needed for the second step, to finish converting the precursor to patchoulol? (5 pts) 2) Describe each of the structures below as aromatic, nonaromatic, or antiaromatic. Assume each structure is planar. In addition, list the hybridization of each heteroatom. (15 pts total) 3) The reagents shown below react to form an intermediate, which, in the presence of acid, continues on to form the final product shown below. (15 pts total) a. Show the structure of the intermediate, and the mechanism for its formation. (5 pts) b. Show the mechanism for the formation of the final product. (10 pts) 4) Predict the major product of the following reactions. If no reaction occurs, then write NR. Show stereochemistry where necessary – if a racemic mixture is formed, you can show only one product and write "racemic" or "rac". (10 pts; 2 pts each) a. $$NO_2$$ O AICI₃ c. $$H_2$$, Ni, very high temp & pressure d. Br $$\frac{\text{Br}}{\text{Br}}$$ $\frac{1) \text{ NaNH}_2}{2) \text{ MeBr}}$ e. $$\frac{1) BH(sia)_2}{2) H_2O_1, H_2O_2, OH^2}$$ 5) Find a way to synthesize the desired product from the given starting material(s) and any other reagents containing at most 5 carbon atoms. If more than one step is necessary, show the product of each step. Do not show mechanisms. (30 pts; 10 pts each) b. $$\longrightarrow$$ \bigcirc 6) The reaction shown below could hypothetically produce three isomers – the ortho, meta, and para products. (15 pts) $$\mathsf{HO} = \underbrace{\begin{array}{c} \mathsf{HNO}_3, \\ \mathsf{H_2SO_4} \end{array}}$$ a. Show the mechanism for the formation of the para product, including all resonance forms for the intermediate. (5 pts) b. Show the mechanism for the formation of the meta product, including all resonance forms for the intermediate. (5 pts) - c. In twenty words or less, explain which of these outcomes is favored and why. (5 pts) - 7) Extra credit! Calicene, shown below, has a surprisingly high dipole moment for a hydrocarbon. Explain why this is true in thirty words or less, and show the dominant resonance form for this molecule. (10 pts e.c.)