Name:	Ke	y

CHEMISTRY 3331, Fall 1999 Professor Walba Third Hour Exam November 18, 1999

scores:

- 1) 25
- 2) 25
- 3) 25
- 4) 25

100

This is a closed-book "open model" exam. You <u>may</u> use models, but no notes or books. Please put all your answers on the test. Use the backs of the pages for scratch.

PLEASE read the questions carefully!

Partial Periodic Table 8A 1A Η He 2A3A 4A 5A 6A 7A 6 8 3 9 10 \mathbf{C} Li N Ne Be B O F 14 13 15 17 11 12 16 18 Na Mg Al Si P Cl Ar 35 Br 53 I

1) (20 pts) a) For each of the following pairs of compounds, circle the stronger Brønsted acid.

b) Treatment of methylacetoacetate with one molar equivalent of methoxide gives an anion (i.e. a negative ion) with formula $C_5H_7O_3$, as shown below. Give the three most important resonance contributors to the structure of this anion, and circle the major contributor.

$$OOO O CH_3 CH_3O^- Na^+ C_5H_7O_3^-$$

$$\begin{array}{c|c}
 & O & O \\
 & O & O \\$$

2) (25 pts) Give the single major organic product for each of the following reactions. If a racemate is formed, consider this to be one product and show only one of the enantiomers.

b) OH
$$\frac{1) \text{ SOCl}_2}{2) \text{ CH}_3\text{CH}_2\text{NH}_2, pyridine}$$

d)
$$CO_2H$$
 CO_2H C

e)
$$\frac{\text{CO}_2\text{CH}_3}{\text{b) H}_3\text{O}^+ \text{workup}}$$
 $\frac{\text{a) CH}_3\text{O}^- \text{Na}^+, \text{CH}_3\text{OH}}{\text{b) H}_3\text{O}^+ \text{workup}}$

Kev Name:

3) (25 pts) Propose reagents for accomplishing the following transformations. NOTE: more than one step may be required! Try to make your synthesis efficient (i.e. the desired product should be the major product).

- b) H₃O⁺ workup
 - 1) SOCl₂
 - 2) NH₃, pyr
 - 3) a) LiAlH₄
 - b) H₃O⁺ workup

 NH_2

- b) H₃O⁺ workup
- 2) a) CH₃O⁻ Na⁺, CH₃OH

$$H_3CO$$
 OCH₃

3) a) NaOH,
$$H_2O$$
, Δ

b)
$$H_3O^+$$
, Δ

Name:	Key

4) (30 pts) a) Propose an arrow-pushing mechanism for the following transformation. Don't abbreviate! Show each intermediate in the mechanism, but do not show transition states.

4 -continued-

b) In an effort to synthesize hydroxyester ${\bf 1}$, a student treated the hydroxyacid ${\bf 2}$ with methanol and ${\bf H}^+$. The product, however, was not the ester ${\bf 1}$, but a new compound ${\bf 3}$, with the molecular formula indicated below.

$$CH_3OH, H^+$$
OH
$$2$$
 CH_3OH, H^+
OS
$$3: C_5H_8O_2$$

Give the structure of 3, and propose a mechanism for its formation.

Ho on
$$H_{0}$$
 H_{0} H_{0}

Name: Key

4 -continued-

c) Propose a successful synthesis of hydroxyester 1 starting with hydroxyacid 2.

HO OH
$$CH_2N_2$$
 HO OCH_3

d) Propose an arrow-pushing mechanism for the following transformation.

4 -continued-

e) Propose a mechanism for the following famous transformation.