Chemistry 3331 Organic 2 Professor Eaton Spring 2015

EXAM 2

- 1. (3 pts) Draw the structure of cyclopropanone.
- 2. (3 pts) Draw the structure for cyclohexanecarboxaldehyde.
- 4. (4 pts) For the molecule drawn below, provide the common name.

5. (4 pts) Name the drawn below according to the IUPAC rules.

- 6. (3 pts) Draw the structure of acetone.
- 7. (5 pts) NBS is used:
- a. as a catalyst for allylic bromination
- b. to add hydroxyls to nitrobenzenes
- c. to brominate pi-bonds
- d. none of the above

8. (5 pts) The first step in most reactions where an organometallic transition metal is a catalyst is:

- a. Migratory insertion
- b. Ligand substitution
- c. Oxidative addition
- d. Reductive elimination

9. (3 pts) The molecule drawn below is a:

- a. Monoterpene
- b. Diterpene
- c. Sesquiterpene
- d. Catechol
- e. Aniline

10. (5 pts) For the structure drawn in question 7 above, **redraw** it below and carefully label the isoprene units in the structure.

11. (5 points) The reaction step drawn below is from the:

L = A Triphenylphosphine

- a) Heck reaction
- b) Cyclotrimerization
- c) Suzuki coupling
- d) carboxamidation
- e) a and c
- f) a, c and d

- 12. (5 pts) Cyclotrimerization is unique compared to other organometallic catalysis reactions because:
 - a) it does not undergo oxidative addition and reductive elimination
 - b) the reaction is catalytic in the transition metal
 - c) it performs a reversible [2 + 2 + 2] cycloaddition with alkenes
 - d) forms three new carbon-carbon bonds
 - e) none of the above
- 13 (5 pts) For electrophilic aromatic substitution, the rate determining step is:
 - a) Loss of a proton and formation of aromaticity
 - b) Radical attack of a benzene pi-system
 - c) Nucleophilic attack by the benzene sigma-system
 - d) Electrophilic attack by the benzene pi-system
 - e) None of the above
- 14. (8 pts) Draw a molecular orbital scheme for the sigma donor bonding AND pi-back-bonding of carbon monoxide to a transition metal. Draw one scheme for the sigma donor interaction and another for the pi-acceptor or back-bonding.

15. (42 pts) For the reactions shown below, fill in the box to complete the chemical equation by drawing the starting reagent or the product.

$$-MgCI + H_3O^+ + Mg salts$$

Thermodynamic Product

$$\frac{\mathsf{K_2Cr_2O_7}}{\mathsf{H_2SO_4}}$$

$$\frac{\text{MnO}_2}{\text{HO}} + \text{Mn(OH)}_2$$