First 2-Hour Exam

By printing your name below, you pledge that

"On my honor, as a University of Colorado at Boulder student, I have neither given nor received unauthorized assistance on this work."

	Name		
Recitation TA's Name: Recitation Day and Time:			[Amy, Kate or Katie]
Page #	Max. Points	Your Score	
2	10		
3	10		
4	18		
5	12		
6	12		
7	24		
8	10		
9	4		
		Т	OTAL (out of 100)

General Instructions:

- This is a closed book exam! No notes and no molecular models may be used
- You have 2 hours to complete the exam
- Write your name on the top of each page
- Use the back of pages for scratch paper
- Don't cheat!

2

Name_____

Question # 1	10 pts total	
Circle the correct answer (2 pts each):		
a) NaIO $_4$ is a cheap, non-toxic, method for dihydroxylation of alkenes.	TRUE	FALSE
b) Cuprates are useful for alkylation reactions because they are less basic than Grignard reagents.	TRUE	FALSE
c) LAH is a useful reagent for the reduction of esters to aldehydes.	TRUE	FALSE
d) Reduction can involve the addition of O to a molecule.	TRUE	FALSE
e) The carbon atom of a carbonyl group is electrophilic.	TRUE	FALSE
f) A carbene has a carbon with 4 valence electrons plus an empty p orbital	TRUE	FALSE
g) Oxidation can involve the removal of H from an organic compound.	TRUE	FALSE
h) NABH $_4$ is a useful reagent for the reduction of carboxylic acids to aldehydes.	TRUE	FALSE
i) Simple carbene (: CH_2) can not be prepared from CH_3Br and $\emph{t}\text{-BuOK}$.	TRUE	FALSE
 j) A reaction that produces diastereoisomers will always produce them in equal amounts. 	TRUE	FALSE

Question # 2 10 pts total

For each of the reactions below

(i) indicate what the relationship between the products is (enantiomers; diastereoisomers; or same compound)

and (ii) indicate whether you would expect the products to be formed in equal (E) or non-equal amounts (NE). If you think the question of the ratio of products is not relevant to a particular example write NA.

b)
$$\xrightarrow{\text{cat. OsO}_4} \xrightarrow{\text{OH}} \xrightarrow{\text{OH}$$

Question # 3 30 pts total

Draw the product of the following reactions. Remember that aqueous workup is performed at the end of reactions. If a reaction generates enantiomers draw both enantiomers. In cases where diastereoisomers are formed draw both diastereoisomers.

4 pt

b) OH
$$\frac{\text{LAH}}{\text{dry Et}_2\text{O}}$$
 ? $\frac{\text{PDC}}{\text{dry CH}_2\text{Cl}_2}$?

4 pt

4 pt

4pt

2pt

?

f)

2pt

g)

MeLi

4pt

h)

6pt

Question # 4 36 pts total

How would you synthesize the following molecules from the shown starting materials using organic reagents containing less than 7 carbons, and any inorganic reagents you choose. *Please pay attention to stereochemistry where it is shown!* For partial credit show retrosynthesis and/or the products of each step if your synthesis requires more than one step.

BONUS (2pts for correct answer. No partial credit and you can't score >100% on the exam): How would you synthesize the starting material from two organic compounds of 4 carbons?

6 pt

d) For this question provide *3 different syntheses* [i.e. you must start from a different compound!] starting with aldehydes of 7 carbons or less:

Question # 6 14 pts total

Write mechanisms for the following two reactions. Be sure to show all the intermediates and all the arrows required for each step [including aqueous workup if it is required].