CHEM 3311 Dr. Minger

Hour Exam #2 June 19, 2018

Name

Circle your recitation section: 111

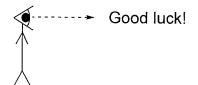
111 112

121

113 114 123 124

115 125

141 142

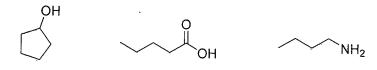

Sign the Honor Code pledge:

I pledge that on my honor, as a University of Colorado at Boulder student, I have neither given nor received unauthorized assistance on this exam.

122

Signature

General Instructions: There are 5 pages of questions, including one extra credit question. Be sure you have them all. Read each question carefully so that you know exactly what is being asked and what you need to write or draw. DO NOT USE COLORED INK. Your scratch work will <u>not</u> be graded, so be sure everything you want graded is written on the exam itself. There is only one correct answer to each multiple choice question; only your final answer will be considered and no partial credit will be awarded for scratch work on multiple choice questions.


1A	2 <u>Ā</u>						•						3 <u>A</u>	4A	5 <u>A</u>	6A	7A	8A
H																		hetium 2
1 (9)79 991um	िस्त पुरिवेशत	,																He
3	4												toron 5	curtion 6	ritrigga 7	oxygen 8	fluxina	DEOLE
l Li	Be	į											B	Č	NI		9	10
6,941	9,9122												10.811	12,611	N 14.097	0	F	Ne
sodium 11	magnesium 12												aluminium	aiticon	physphons	15.999 sultur	18,048 dikirina	20.186 argon
Na	Mg												13	14	15	16	17	18
22,999	21.305												Al	Si	P	S	CI	Ar
(Alassium 19	askstern 20		scandium 21	trisnium	vanadium	chromium	sussection-see	irtan	cobatt	nisket	copper	Zinc	20 382 gallenn	28.066 gernantum	30.974 3rsenio	37,065 sekantum	35.452 broming	39.548 krypkri
ĸ				22	23	24	25 B #	26	27	28	29	30	31	32	33	34	35	36
39,096	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
rutidien	strontium		AH,055	47.867 ziroonum	50.912 niobum	51.998 melyberatum	t-chrethan	95,845 ruthenium	58,933 (fiedlum	58,698 mult-tileq	83.546 sitwa	65.39 cadminut	69.728 kedem	72,01 tin	74.922	78,96	79.0%	83,80
37	38		39	40	41	42	43	44	45	46	47	48	49	50	.xottmyony 51	fellunum 52	iodine 53	хенхэн 54
Rb	Sr		Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	ln .	Sn	Sb	Te	ï	Хe
25.468 -275480	87.62 Istrium		58,906 fulcitum	91.224 halnium	92.965	95.94	[98]	101,07	192:91	106.42	107.67	11241	114.82	119.71	121.76	127 60	126.97	121.29
55	56	57-70.	71	72	Iantalum 73	turqalar 74	rt>anium 75	05mirmi 76	inclicus 77	plannim 78	93d 79	marcury 80	thallom 81	ksak1	bismuth	potonian	astaline	ta-Em
Cs	Ba	*	Lu	Hf	Ta	W	Re	Os	lr	Pt				82	83	84	85	86
132,91	137.33		174.97	179,49	180.05	183.84	186,21	190,23	192.22		Au	Hg	TI	Pb	Bi	Po	At	Rn
transum 87	ricition 88	89-102	103	пинентоговит 104	diamini 105	seal (Gymrn	pohrium	hassium	mestrerium	195.68 Unonadium	195.97 100000000	200.59 ununbium	201,38	207.2 ununquartions	206 98	[239]	[210]	1/2/1
Fr	Ra	* *				106	107	108	109	110	111	112		114				
1223	Na 1226	A 7	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq				
1223 1	1224		[252]	12/1	[262]	[260]	[264]	10/9	12689	[27.1]	(272)	[277]		[289]				

Lanthanide series

**Actinide series

5	Lauthanum 57 La 129.51	Ce	Pr 146,91	Nd	Pm	55m3firm 62 Sm 150,36	Eu	Gd 157.25	Tb	dysprosium 66 Dy	1x:lms/m 67 Ho	68 Er	thidium 69 Tm	Ytterbium 70 Yb
	89 Ac (227)	90 Th	Pa Pa 231,04	07anium 92 U 239.03	Np	Pu	95 Am	Cm	158,93 bakalının 97 BK 1247	167.50 callomium 98 Cf	164.93 elisteinum 99 Es	167.28 1900lum 100 Fm	101 Md	173,64 Instruction 102 No

1a) Arrange the three acids in order of **decreasing** pK_a . (Highest to lowest) (5 pts)

W

X

Υ

- a. W > X > Y
- b. Y > X > W
- c. Y > W > X
- d. W > Y > X
- e. X > Y > W
- 1b) Using a conjugate base stability argument, which of these factors is the <u>best</u> explanation for the difference in acidity between structures **W** and **X** in question 1a? (5 pts)
 - a. Resonance
 - b. Electronegativity
 - c. Charge
 - d. Size/Polarizability
- 1c) Using a conjugate base stability argument, which of these factors is the <u>best</u> explanation for the difference in acidity between structures **W** and **Y** in question 1a? (5 pts)
 - a. Resonance
 - b. Electronegativity
 - c. Inductive effect
 - d. Size/Polarizability
- 1d) Circle the stronger acid (5 pts):

1e) Circle the stronger base (5 pts):

2) Atenolol is a beta blocker used to treat high blood pressure. Which proton is more acidic, A or B? Explain your reasoning, using a conjugate base stability argument. To receive credit, you must explain WHY one conjugate base is more stable than the other. (10 pts)

Reason (one or two sentences):

When methoxide ion, a Bronsted base, is combined with methyl acetate, a Bronsted acid ($pK_a = 24$), as shown in this partial equation, a proton transfer occurs. The most acidic protons in methyl acetate are attached to the carbon designated with the arrow. You will need to draw one of these hydrogens explicitly in your mechanism.

3a) (10 pts) Using curved arrows, draw a mechanism for this proton transfer reaction. (Redraw the structures below. Do not draw your mechanism on the structures shown above.) Draw the products of this reaction. Show all lone pairs and non-zero formal charges.

- 3b) (3 pts) Estimate the equilibrium constant for the reaction: K =_____
- 3c) (2 pts) State which side of the reaction is favored at equilibrium by circling the correct response: Reactants (left) Products (right)

4a)	Circle the ring with the MOST strain (4 pts):
4b)	Circle the ring with the LEAST strain (4 pts):
4c)	Draw the requested Newman projections of 2,3-dimethylbutane looking down the C2-C3 bond. Then identify the type(s) of strain present in each conformation by circling the correct response. <i>Hint:</i> Be sure you are drawing the correct molecule, or you will not get full credit. (10 pts)
	Most stable Least stable
4d)	(7 pts) Identify all type(s) of strain present in the MOST stable conformation you just drew. Possibilities include torsional, angle, steric, and "none".
	Identify all type(s) of strain present in the LEAST stable conformation you just drew. Possibilities include torsional, angle, steric, and "none".
	How many gauche butane interactions are there in the MOST stable conformation? Write the number here:
	How many gauche butane interactions are there in the LEAST stable conformation? Write the number here:

5a) Identify the requested orbital for each of the following mechanisms (e.g. what kind of orbital is the HOMO or LUMO in each case) (16 pts).

in the LUMO: _____

i..⊖
:Br:
:Br:
:Identify the LUMO:

Identify the HOMO:

ici : OCH₃ H₃CO H₃CO Identify the HOMO:

5b) True or False? Write the correct response on the line before each statement (9 pts)

_____ A bonding molecular orbital is the result of an out-of-phase combination of atomic orbitals.

The bond order of H_2 is 2.

_____ A C-C π* orbital (e.g. in ethylene) has one nodal plane (one node).

6) Extra credit. (10 pts)

In the presence of a strong acid like HCl, a carboxylic acid will be protonated. Which of the two oxygen atoms is most likely to get protonated (i.e., which oxygen atom is more basic), and why? Support your answer using appropriate chemical structures that include all lone pairs and nonzero formal charges.

The more basic oxygen atom is (circle one):

The carbonyl oxygen

The OH group oxygen

Now show why using structures and explanations:

			ė .
