Please read and sign the Honor Code statement below:

I pledge that on my honor, as a University of Colorado at Boulder student, I have neither given nor received unauthorized assistance on this exam.

	Signature

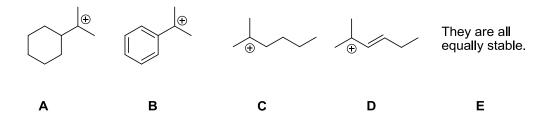
General Instructions: There are 10 printed pages and 19 questions, including this cover sheet. Be sure you have them all. Read each question carefully so that you know exactly what is being asked and what you need to write or draw. Your work on scratch pages will <u>not</u> be graded, so be sure everything you want graded is written on the exam itself.

Each multiple choice question (1-15) is worth **4 points and has only one correct answer.** Good luck!

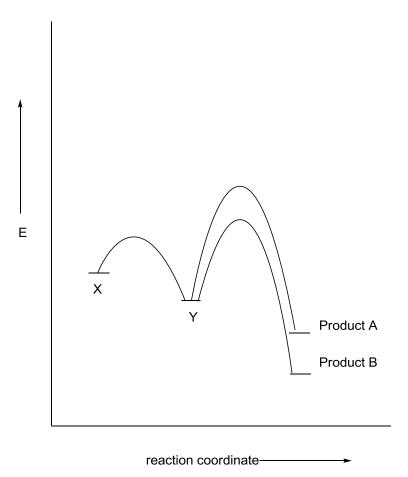
PERIODIC CHART OF THE ELEMENTS														INERT			
IA	IIA	IIIB	IVB	VΒ	VIΒ	YIIB		VIII		IB	IIB	IIIA	IVA	٧A	VΙΑ	VIIA	GASES
1 H 1.00797																1 H 1.00797	
3 Li 6.939	Be 9.0122											B 10.811	6 12.0112	7 N 14.0067	8 15.9994	F	10 Ne 20.183
22.9898	12 Mg 24.312											13 Al 26.9815		15 P 30.9738	16 S 32.064	17 CI 35.453	18 Ar 39.948
19	20	21 C	22	23	24	25	²⁶	27	28 N I :	29	30	31	32	33	34 C	35	36
K	Ca 40.08	Sc 44.956	47.90	V 50.942	51.996	IVI N 54.9380	⊢e 55.847	58.9332	Ni 58.71	63.54	∠n 65.37	Ga	Ge 72.59	AS 74.9216	Se 78.96	Br	Kr
_37	38	39	40	41	42	43	_44	45	46	47	48	49	50	51	52	53	54
Rb	Sr 87.62	Y 88.905	Zr	Nb	Mo 95.94	T C	Ru	Rh	Pd	Ag 107.870	Cd	In 114.82	Sn	Sb 121.75	Te	126.904	Xe
55	56	*57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf 178.49	Ta 180.948	W 183.85	Re	Os 190.2	lr 192.2	Pt 195.09	Au	Hg	T I 204.37	Pb 207.19	Bi 208.980	Po	At (210)	Rn
87	_88	_{‡.} 89	104	105	106	107	108	109	110	111	112						
Fr	Ra	Ac	Rf (261)	Db (262)	Sg	Bh (262)	Hs (265)	Mt (266)	? (271)	? (272)	? (277)						

Circle the single best answer to each multiple choice question (1-15). (4 pts each)

1. Consider the two alkene isomers shown.



Which of the following statements is *true*?


- a. The two isomers cannot interconvert because the π bond has a high rotational barrier.
- b. The trans isomer has more van der Waals interactions, or steric strain, than the cis isomer.
- c. The cis isomer has no eclipsing interactions.
- d. The two isomers are equal in energy.
- e. These compounds are heptenes.

2. A regioselective reaction

- a. must have a carbocation intermediate.
- b. forms a mixture of constitutional isomers.
- c. forms one constitutional isomer in preference to others possible.
- d. can only be performed in particular regions of the country.
- e. is one that undergoes a rearrangement.
- 3. Which of the following structures is the **most stable** carbocation?

4. Consider the energy vs. reaction coordinate diagram shown below:

Which of the following statements about this reaction is false?

- a. The reaction has one intermediate.
- b. The reaction has two mechanistic steps.
- c. The reaction forms Product A in preference to Product B.
- d. The second step is rate determining.
- e. The overall reaction is exothermic.

5. What is the major product of the reaction shown?

$$\begin{array}{c} & \text{CI}_2 \\ \hline & \\ & \text{H}_2\text{O} \end{array}$$

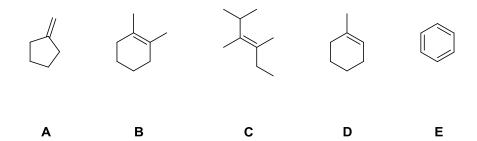
- a. 3-methyl-3-pentanol
- b. 3-chloro-3-methyl-2-pentanol
- c. 2,3-dichloro-3-methylpentane
- d. 2-chloro-3-methyl-3-pentanol
- e. 3-chloro-3-methylpentane
- 6. Which of these alkenes is an *E* alkene?

7. Rank the following C₄ alkene isomers in order of *decreasing* stability.

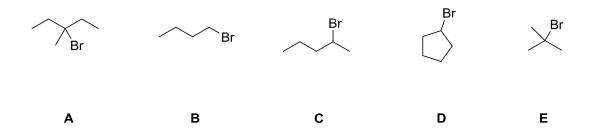
- a. P > Q > R
- b. R > Q > P
- c. P > R > Q
- d. R > P > Q
- e. Q > R > P

8. What is the correct IUPAC name for this compound?

- 6-propyl-1-hepten-7-ol a.
- b. 2-propyl-6-hepten-1-ol
- 6-methylenol-1-nonene C.
- 5-heptene-2-ethyl-1-hexanol d.
- none of these names is correct e.
- 9. The carbocation shown is stabilized by hyperconjugation. Which of the following choices correctly describes one set of orbitals involved in this stabilization?


- C-C σ and C-H σ^* a.
- p and sp^3 p and sp^2 b.
- C.
- p and C-C σ d.
- p and C-H σ*
- 10. What is the product of the reaction shown?

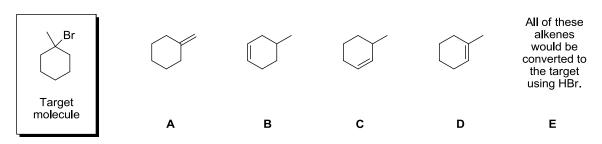
None of these is the product of this reaction.


В

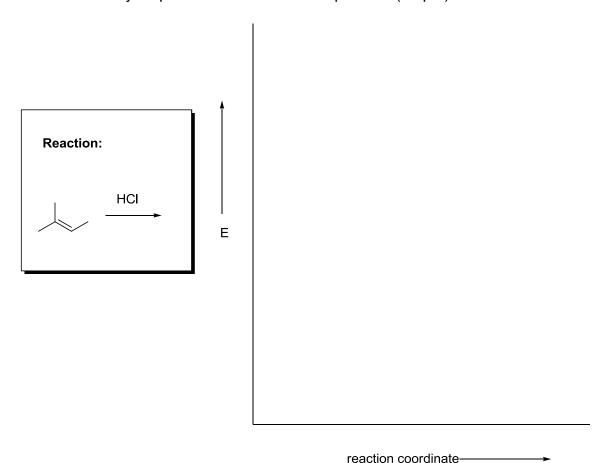
Ε

11. Which of these alkenes would likely give more than one product on treatment with HCI?

12. Which of these alkyl bromides could *not* be made using a Markovnikov addition of HBr to an alkene?



13. What is the name of this compound?


- a. sec-butyl alcohol
- b. *tert*-butyl alcohol
- c. isopropyl alcohol
- d. isobutyl alcohol
- e. neopentyl alcohol

14. Which of the following C_8 alkene isomers has the *largest negative value* for its standard heat of formation, ΔH_f° ?

15. Which of the following alkenes would not generate *any* of the target molecule (product) shown when treated with HBr?

16. Draw an energy vs. reaction coordinate diagram for the *rate-determining step only* for the reaction shown. All chemical species involved in the rate-determining step should be drawn at the appropriate relative energy levels, with any non-zero formal charges included. Clearly identify the activation energy and the transition state. Do not draw any mechanisms in response to this question. Do not draw any steps other than the one requested. (10 pts)

17. Predict the product of this reaction and draw a mechanism to show how the product is formed. Include all curved arrows, necessary lone pairs and non-zero formal charges for full credit. (10 pts)

18. Propose a mechanism for the reaction shown to illustrate the conversion of reactants to the product. Include all curved arrows, necessary lone pairs, and non-zero formal charges for full credit. (10 pts)

19. Explain the formation of two products in the following reaction. Your explanation must include appropriate mechanisms showing the formation of each product. (Hint: Start with the product on the left. Carefully study the key intermediate leading to this product.) (10 pts)