Please read and sign the Honor Code statement below:

I pledge that on my honor, as a University of Colorado at Boulder student, I have neither given nor received unauthorized assistance on this exam.

Signature

General Instructions: There are 9 pages and 19 questions, including this cover sheet. Be sure you have them all. Read each question carefully so that you know exactly what is being asked and what you need to write or draw. Your work on scratch pages will <u>not</u> be graded, so be sure everything you want graded is written on the exam itself.

Each multiple choice question (1-16) is worth **4 points and has only one correct answer**. Bubble in your answers to these questions on the Scantron provided. For the multiple choice questions, only the Scantron will be graded, not work on the exam. Good luck!

	PERIODIC CHART OF THE ELEMENTS															INERT	
IA	IIA	IIIB	IYB	¥Β	¥ΙΒ	γIIB		YIII		IB	IIB	IIIA	IYA	YA	ΥIA	YIIA	GASES
1 H 1.00797																1 H 1.00797	2 He 4.0026
3 Li 6.939	4 Be 9.0122											5 B 10.811	С 12.0112	7 N 14.0067	0 15.9994	9 F 18.9984	10 Ne 20.183
11 Na 22.9898	12 Mg 24.312											13 AI 26.9815	14 Si 28.086	15 P 30.9738	16 S 32.064	17 CI 35.453	18 Ar ^{39.948}
10	20	24	22	22	24	25	26	27	20	20	20	24	22	22	24	25	20
	$\hat{\mathbf{\Delta}}_{-}$	ć'.	<u><u></u></u>	23	<u>24</u>	23		<i>~</i> '-	28	29	30		32 •	33	34 O	35	30
K 39.102	Ca 40.08	Sc 44.956	Ti 47.90	V 50.942	Čr 51.996	Mn 54.9380	Fe 55.847	Čo 58.9332	Ni 58.71	Cu 63.54	Zn 65.37	Ga 69.72	Ge 72.59	As 74.9216	34 Se 78.96	Br	Kr 83.80
39.102 37	20 Ca 40.08 38	Sc 44.956 39	Ti 47.90	50.942	Cr 51.996 42	23 Mn 54.9380 43	Fe 55.847	Co 58.9332 45	28 Ni 58.71 46	29 Cu 63.54 47	30 Zn 65.37 48	49	50	33 As 74.9216	52	Br 79.909 53	36 Kr 83.80 54
K 39.102 37 Rb	Ca 40.08 38 Sr	Sc 44.956 39 Y	47.90 47.90 40 Zr	23 V 50.942 41 ND	Cr 51.996 42 Mo	Mn 54.9380 43 Tc	Fe 55.847 44 Ru	27 Co 58.9332 45 Rh	Ni 58.71 46 Pd	29 Cu 63.54 47 Ag	Zn ^{65.37} 48 Cd	49 In	Ge 72.59 50 Sn	33 As 74.9216 51 Sb	34 Se ^{78.96} 52 Te	33 Br 79.909 53 I	³⁶ 83.80 54 Xe
K 39.102 37 Rb 85.47	20 Ca 40.08 38 Sr 87.62 56	Sc 44.956 39 Y 88.905	47.90 40 2r 91.22 72	23 V 50.942 41 ND 92.906 73	24 Cr 51.996 42 Mo 95.94 74	23 Mn 54.9380 43 Tc (99) 75	55.847 44 Ru 101.07	27 Co 58.9332 45 Rh 102.905 77	28 Ni 58.71 46 Pd 106.4	29 Cu 63.54 47 Ag 107.870	30 Zn 65.37 48 Cd 112.40 80	49 114.82 81	32 Ge 72.59 50 Sn 118.69 82	33 As 74.9216 51 Sb 121.75 83	34 Se 78.96 52 Te 127.60	35 Br 79.909 53 1 126.904	36 Kr 83.80 54 Xe 131.30 86
39.102 37 Rb 85.47 55 Cs 132.905	20 Ca 40.08 38 Sr 87.62 56 Ba 137.34	Sc 44.956 39 Y 88.905 *57 La 138.91	22 Ti 47.90 40 Zr 91.22 72 Hff 178.49	23 V 50.942 41 Nb 92.906 73 Ta 180.948	24 Cr 51.996 42 MO 95.94 74 W 183.85	23 Mn 54.9380 43 Tc (99) 75 Re 186.2	26 Fe 55.847 44 Ru 101.07 76 Os 190.2	27 Co 58.9332 45 Rh 102.905 77 Ir 192.2	28 Ni 58.71 46 Pd 106.4 78 Pt 195.09	29 Cu 63.54 47 Ag 107.870 79 Au 196.967	30 Zn 65.37 48 Cd 112.40 80 Hg 200.59	31 Ga 69.72 49 In 114.82 81 TI 204.37	32 Ge 72.59 50 Sn 118.69 82 Pb 207.19	33 As 74.9216 51 Sb 121.75 83 Bi 208.980	34 Se 78.96 52 Te 127.60 84 Po (210)	35 Br 79.909 53 1 126.904 85 At (210)	кг 83.80 54 Хе 131.30 86 Rn (222)
19 K 39.102 37 Rb 85.47 55 Cs 132.905 87	20 Ca 40.08 38 Sr 87.62 56 Ba 137.34 88	SC 44.956 39 Y 88.905 *57 La 138.91 *89	22 Ti 47.90 40 Zr 91.22 72 72 Hf 178.49 104	23 V 50.942 41 Nb 92.906 73 73 Ta 180.948 105	24 Cr 51.996 42 MO 95.94 74 74 W 183.85 106	23 Mn 54.9380 43 Tc (99) 75 Re 186.2 107	26 Fe 55.847 44 Ru 101.07 76 OS 190.2 108	27 Co 58.9332 45 Rh 102.905 77 Ir 192.2 109	28 Ni 58.71 46 Pd 106.4 78 Pt 195.09 110	29 Cu 63.54 47 Ag 107.870 79 Au 196.967 111	30 Zn 65.37 48 Cd 112.40 80 Hg 200.59 112	31 Ga 69.72 49 In 114.82 81 TI 204.37	32 Ge 72.59 50 Sn 118.69 82 Pb 207.19	As 74.9216 51 121.75 83 Bi 208.980	34 Se 78.96 52 Te 127.60 84 Po (210)	33 Br 79.909 53 1 126.904 85 At (210)	зь Кг 33.80 54 Хе 131.30 86 Rn (222)

1. This is the structure of Vyvanse®, a compound used to treat attention deficit hyperactivity disorder (ADHD). Which of the following functional groups is present in this molecule?

Vyvanse_®

- a. amine
- b. ester
- c. ketone
- d. ether
- e. alcohol

2. This is the structure of propanolol, a compound called a "beta blocker" that is used for the treatment of cardiac arrhythmias. Which of the following functional groups is present in this molecule?

Propanolol

- a. aldehyde
- b. ether
- c. carboxylic acid
- d. alkyne
- e. ketone

Questions 3-6 refer to thujone, the molecule shown below.

Thujone is a naturally occurring oil found in sage and other plants. It is a GABA receptor antagonist that causes convulsions in high doses. Use the numbering system on the structure to answer questions . Not all lone pairs are shown. All atoms are neutral.

- 3. What is the hybridization of C-7?
 - a.
 - sp sp² b.
 - sp³ C.
 - d. C-7 is not hybridized.
- 4. Because of the functional group it contains, this molecule is correctly classified as a:
 - ester a.
 - b. alcohol
 - C. ketone
 - ether d.
 - aldehyde e.
- 5. The geometry at C-3 is
 - tetrahedral a.
 - b. trigonal planar
 - linear C.
 - d. bent
 - none of these e.
- 6. What is the hybridization of O-2?
 - sp sp² a.
 - b.
 - sp^3 C.
 - O-2 is not hybridized. d.

7. What is the equilibrium constant, *K*, for the forward reaction shown below? (Spectator ions are omitted for clarity.)

8. Which of the following compounds is an ester?

9. NH_3 and H_2O are both Bronsted acids. We have explored stabilization in the conjugate base to explain acidity. For this pair of acids, which of the following ideas is the best to explain which conjugate base is more stable?

- a. The more stable conjugate base has more resonance stabilization.
- b. The more stable conjugate base has less resonance stabilization.
- c. The more stable conjugate base has its negative charge on a more electronegative atom than in the less stable conjugate base.
- d. The more stable conjugate base has its negative charge on a less electronegative atom than in the less stable conjugate base.
- e. The more stable conjugate base has its negative charge on an atom that is sp^2 hybridized.

For questions 10 and 11, consider the reaction of sodium hydroxide and 2bromopropane shown here. Hydroxide ion displaces bromide ion in a substitution reaction (the sodium spectator ion is not shown):

10. The frontier orbitals are the ones that interact in a chemical reaction. Which of these statements correctly identifies the frontier orbitals in this reaction?

- HOMO: sp^2 on O in hydroxide a. LUMO: p on C in 2-bromopropane
- HOMO: sp^3 on O in hydroxide b. LUMO: *p* on C in 2-bromopropane
- HOMO: *p* on C in 2-bromopropane C. LUMO: sp^3 on O in hydroxide HOMO: sp^3 on O in hydroxide
- d. LUMO: C-Br σ^* in 2-bromopropane
- None of these choices is correct e.

11. Which of the following is the best label for hydroxide in the reaction shown above?

- Electrophile a.
- Lewis acid b.
- Bronsted base C.
- Nucleophile d.
- Bronsted acid e.

12. Which of the following statements about the orbital interaction diagram for H₂ is *false*?

- There are two atomic orbitals that mix to produce two molecular a. orbitals.
- There is one bonding molecular orbital and one antibonding b. molecular orbital.
- The difference in energy between the bonding orbital and the C. atomic orbitals is the same as the difference in energy between the antibonding orbital and the atomic orbitals.
- The difference in energy between the bonding orbital and the d. atomic orbitals is less than the difference in energy between the antibonding orbital and the atomic orbitals.

13. This compound is esmolol, a drug used to treat high blood pressure.

Which statement is true?

- a. The proton in the OH group is more acidic than the proton in the NH group.
- b. The proton in the NH group is more acidic than the proton in the OH group.
- c. The protons on the CH₃O group (shown at the left side of the molecule) are the most acidic protons in the molecule.
- d. Esmolol contains an aldehyde functional group.
- e. There are no sp^2 hybridized atoms in esmolol.
- 14. What is the LUMO in the reaction shown below?

- a. 1s on H
- b. *sp*³ on Cl
- c. nonbonding orbital in the ketone
- d. H-Cl σ
- e. H-Cl σ*
- 15. What is the percentage *p* character in an sp^3 orbital?
 - a. 25%
 - b. 33.3%
 - c. 50%
 - d. 66.7%
 - e. 75%

16. What are the formal charges on each of the non-hydrogen atoms in the compounds shown?

CH₃ BH₃ NH₄ :CH₃

From left to right, the formal charges are:

- 1-, 1+, 0, 1a.
- b. 1+, 0, 1+, 1-
- 0, 0, 1+, 0 C.
- d.
- 0, 0, 0, 0 1-, 0, 1-, 1+ e.

17. Draw all the constitutional isomers of pentane *using bond line formulas* (that is, do not explicitly draw "C's"). (6 pts)

18. Predict the product and draw a mechanism for the reaction between the Lewis acid and Lewis base shown. Include all necessary curved arrows, electron pairs, and non-zero formal charges. (10 pts)

 \oplus + H₂O \longrightarrow

19. a. Draw the products of the mechanism shown here. (Hint: There are two products.) (10 pts)

b. One of the products has at least one additional resonance contributor. Draw this additional contributor and put a circle around *the more stable resonance contributor.* (Start by redrawing the appropriate product from part "a" above, then draw the resonance contributor.) (10 pts)