CHEM 3311-100 Spring 2007

Exam 1

Professor R. Hoenigman

I pledge to uphold the CU Honor Code:

Signature			
Name (printed)			
Last four digits of your student ID number			
Recitation TA			
Recitation number, day, and time			

You have 1 hour and 30 minutes to complete this exam.

No model kits or calculators allowed.

Periodic table and scratch paper are attached.

DO NOT TURN THIS PAGE UNTIL INSTRUCTED TO DO SO.

Recitation Sections:

#	Day	Time	TA	SCORE:			
121	Tuesday	8 am	Kelly				
131	Tuesday	1 pm	Kelly	Page 1	_/14	Page 5	_/18
141	Wednesday	8 am	Greg	-		_	
151	Wednesday	12 pm	Greg	Page 2	/14	Page 6	/14
153	Wednesday	12 pm	Kelly	<u> </u>	_	-	
152	Wednesday	5 pm	Kelly	Page 3	/12	Page 7	/10
171	Thursday	12 pm	Greg	<u> </u>	_	-	
	·	·	J	Page 4	_/18		
						TOTAL	_/100

- 1. (8 pts) Ammonia can act as either an acid or a base.
 - A. Draw the Lewis structure of ammonia.
 - B. What is the pK_a of ammonia?
 - C. Fill in the equation below to relate the pKa of ammonia to its Ka.

- D. Draw the Lewis structure of the conjugate base of ammonia.
- E. Draw the Lewis structure of the conjugate acid of ammonia.

- 2. (6 pts) Prozac®, shown below, is a widely prescribed antidepresent.
 - A. Label each atom indicated by a box as sp^3 , sp^2 , sp, or none of these. B. Label each atom indicated by a circle as 1° , 2° , 3° , or 4° .

3. (9 pts) Give the IUPAC name for each of the following compounds.

B. (CH₃CH₂)₂CHCH₂CH(CH₃)₂

C.
$$\begin{array}{c} CH_2CH_2CH(CH_3)_2 \\ H_3CH_2C & H \\ CH_2CH_2CH_2CH_2CH_3 \end{array}$$

4. (5 pts) Circle the compounds below that have a dipole moment.

HCN	H ₂ O	BF ₃
CH ₃ CH ₂ COOH	CCI ₄	CH₃CI
CH₂O	NCCH₂CH₂CN	cyclobutane

5. (12 pts) State whether the following pairs of compounds are constitutional isomers, stereoisomers, conformers, resonance structures, identical structures, or have no relation. Place your answer in the box.

A. and

B. sec-butylcycloheptane and

C. and

E. and Br

 6. (18 pts) For each of the following pairs, circle the more stable compound or ion. In the box, give a brief reason for your choice.

A.

1,1-dimethylcyclopentane

or

1-ethyl-3-methylcyclobutane

В.

cis-1-methyl-2-(1-methylethyl)cyclohexane

or

trans-1-methyl-2-(1-methylethyl)cyclohexane

C.

or

D.

$$H$$
 H
 H_3C
 CH_2
 CH_3

or

$$H_3C$$
 H_3C
 $CH(CH_3)_2$

E.

or

F.

or

- 7. (9 pts) The following is a three-part question. Be sure to draw neat chair cyclohexanes.
 - A. Draw the most stable conformer of *cis*-1-*tert*-butyl-4-methylcyclohexane.

B. Draw the most stable conformer of *trans*-1-*tert*-butyl-4-methylcyclohexane.

C. Which of the isomers (cis or trans) is more stable? Why?

8. (9 pts) Circle the more acidic compound in the following pairs. In the box, give a brief reason for your choice.

A.

HC CH Or CH₃CH₂OH

B. + + + (CH₃)₃NH or (CH₃)₂OH

C. CF_3CH_2SH or CH_3CH_2SH

9. (4 pts) Circle the most acidic hydrogen in phenytoin, an anti-seizure drug.

phenytoin

- 10. (10 pts) Carbonate (CO₃²⁻) is a very common polyatomic ion.
 - A. Draw all of the resonance structures of the carbonate ion. Be sure to show any non-zero formal charges. Label each structure as a major or minor resonance contributor.

B. Explain why all of the carbon–oxygen bonds in the carbonate ion have the same bond length.

11. (10 pts) Complete the following acid-base reactions. Show all non-zero formal charges. If no reaction occurs write NR.

A.
$$CH_3CH_2Li + H_2O \rightarrow$$

B. BF₃ + CH₃SCH₃
$$\rightarrow$$

D.
$$C_2H_2 + NH_2Na \rightarrow$$