CHEM 3311-100 Spring 2007 # Exam 1 # Professor R. Hoenigman I pledge to uphold the CU Honor Code: | Signature | | | | |--|--|--|--| | Name (printed) | | | | | Last four digits of your student ID number | | | | | Recitation TA | | | | | Recitation number, day, and time | | | | You have 1 hour and 30 minutes to complete this exam. No model kits or calculators allowed. Periodic table and scratch paper are attached. ## DO NOT TURN THIS PAGE UNTIL INSTRUCTED TO DO SO. ## **Recitation Sections:** | # | Day | Time | TA | SCORE: | | | | |-----|-----------|-------|-------|----------|------|--------|-------| | 121 | Tuesday | 8 am | Kelly | | | | | | 131 | Tuesday | 1 pm | Kelly | Page 1 | _/14 | Page 5 | _/18 | | 141 | Wednesday | 8 am | Greg | - | | _ | | | 151 | Wednesday | 12 pm | Greg | Page 2 | /14 | Page 6 | /14 | | 153 | Wednesday | 12 pm | Kelly | <u> </u> | _ | - | | | 152 | Wednesday | 5 pm | Kelly | Page 3 | /12 | Page 7 | /10 | | 171 | Thursday | 12 pm | Greg | <u> </u> | _ | - | | | | · | · | J | Page 4 | _/18 | | | | | | | | | | TOTAL | _/100 | - 1. (8 pts) Ammonia can act as either an acid or a base. - A. Draw the Lewis structure of ammonia. - B. What is the pK_a of ammonia? - C. Fill in the equation below to relate the pKa of ammonia to its Ka. - D. Draw the Lewis structure of the conjugate base of ammonia. - E. Draw the Lewis structure of the conjugate acid of ammonia. - 2. (6 pts) Prozac®, shown below, is a widely prescribed antidepresent. - A. Label each atom indicated by a box as sp^3 , sp^2 , sp, or none of these. B. Label each atom indicated by a circle as 1° , 2° , 3° , or 4° . 3. (9 pts) Give the IUPAC name for each of the following compounds. B. (CH₃CH₂)₂CHCH₂CH(CH₃)₂ C. $$\begin{array}{c} CH_2CH_2CH(CH_3)_2 \\ H_3CH_2C & H \\ CH_2CH_2CH_2CH_2CH_3 \end{array}$$ 4. (5 pts) Circle the compounds below that have a dipole moment. | HCN | H ₂ O | BF ₃ | |--------------------------------------|------------------|-----------------| | CH ₃ CH ₂ COOH | CCI ₄ | CH₃CI | | CH₂O | NCCH₂CH₂CN | cyclobutane | 5. (12 pts) State whether the following pairs of compounds are constitutional isomers, stereoisomers, conformers, resonance structures, identical structures, or have no relation. Place your answer in the box. A. and B. sec-butylcycloheptane and C. and E. and Br 6. (18 pts) For each of the following pairs, circle the more stable compound or ion. In the box, give a brief reason for your choice. A. 1,1-dimethylcyclopentane or 1-ethyl-3-methylcyclobutane В. cis-1-methyl-2-(1-methylethyl)cyclohexane or trans-1-methyl-2-(1-methylethyl)cyclohexane C. or D. $$H$$ H H_3C CH_2 CH_3 or $$H_3C$$ H_3C $CH(CH_3)_2$ E. or F. or - 7. (9 pts) The following is a three-part question. Be sure to draw neat chair cyclohexanes. - A. Draw the most stable conformer of *cis*-1-*tert*-butyl-4-methylcyclohexane. B. Draw the most stable conformer of *trans*-1-*tert*-butyl-4-methylcyclohexane. C. Which of the isomers (cis or trans) is more stable? Why? 8. (9 pts) Circle the more acidic compound in the following pairs. In the box, give a brief reason for your choice. A. HC CH Or CH₃CH₂OH B. + + + (CH₃)₃NH or (CH₃)₂OH C. CF_3CH_2SH or CH_3CH_2SH 9. (4 pts) Circle the most acidic hydrogen in phenytoin, an anti-seizure drug. phenytoin - 10. (10 pts) Carbonate (CO₃²⁻) is a very common polyatomic ion. - A. Draw all of the resonance structures of the carbonate ion. Be sure to show any non-zero formal charges. Label each structure as a major or minor resonance contributor. B. Explain why all of the carbon–oxygen bonds in the carbonate ion have the same bond length. 11. (10 pts) Complete the following acid-base reactions. Show all non-zero formal charges. If no reaction occurs write NR. A. $$CH_3CH_2Li + H_2O \rightarrow$$ B. BF₃ + CH₃SCH₃ $$\rightarrow$$ D. $$C_2H_2 + NH_2Na \rightarrow$$