CHEM 3311

HARRINGTON

Exam 4

1:30 – 4:00 PM May 10, 2017 in CHEM 142

Instructions. No notes, books, laptops, phones, calculators, models, or stencils are allowed.

Periodic Table, Electronegativity Chart, Eclipsing and Gauche Strain Energy Tables, 1,3-Diaxial Strain Energy Table, and Table of pK_a Values are provided.

	Points	Score
	Possible	
1	20	
2	20	
3	20	
4	20	
5	20	
6	20	
7	20	
8	20	
9	20	
10	20	
Exam 4 Total Raw Score	200	
Exam 4 Curve		
Exam 4 Curved Score		
Exam 4 Letter Grade		
Exam Score Replaced	#	
Quiz Points	50	
Total Points	550	
Final Letter Grade		

NAME: KEY

1(**20 points**) Functional groups are the organizational theme for many organic chemistry textbooks, including *Organic Chemistry, 6th Edition*, by Loudon and Parise. Name the functional group in each molecule below. **2 points each**

$$CH_{3}CH_{2}CH=CH_{2}$$

$$alkene$$

$$CH_{3}CH_{2}CH_{2}CH_{2}CH_{2}-OH$$

$$alcohol/hydroxyl$$

$$CH_{3}CH_{2}CH_{2}CH_{2}CH_{2}-OH$$

$$alcohol/hydroxyl$$

$$CH_{3}CH_{2}CH_{2}CH_{2}CH_{2}-F$$

$$alkyl halde/alkyl fluoride$$

$$CH_{3}CH_{2}CH_{2}CH_{2}CH_{2}-F$$

$$alkyl halde/alkyl fluoride$$

$$CH_{3}CH_{2}CH_{2}CH_{2}CH_{3}$$

$$ether$$

$$CH_{3}CH_{2}CH_{2}CH_{2}CH_{3}$$

$$CH_{3}CH_{2}CH_{2}CH_{2}CH_{2}CH_{3}$$

$$CH_{3}CH_{2}CH_{2}CH_{2}CH_{3}$$

$$CH_{3}CH_{2}CH_{2}CH_{2}CH_{3}$$

$$CH_{3}CH_{2}CH_{2}CH_{2}CH_{3}$$

$$CH_{3}CH_{2}CH_{2}CH_{2}CH_{3}$$

$$CH_{3}CH_{2}CH_{2}CH_{2}CH_{2}CH_{3}$$

$$CH_{3}CH_{2}CH_{2}CH_{2}CH_{3}$$

$$CH_{3}CH_{2}CH_{2}CH_{2}CH_{2}CH_{3}$$

$$CH_{3}CH_{2}CH_{2}CH_{2}CH_{2}CH_{3}$$

$$CH_{3}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{3}$$

$$CH_{3}CH_{2}CH_{2}CH_{2}CH_{2}CH_{3}CH_{2}C$$

2. (**20 points**) Assign the appropriate formal charge to each atom. Atoms with formal charge not assigned will be assumed to have a formal charge of 0 (zero). **2 points each**

3. (20 points) Circle the compound which has: 2 points each

HIGHER BOILING POINT

	chloromethane	or	octane
	1-hexanol	or	1-methoxypentane
	1-chloropentane	or	1-chloro-3-methylbutane
	fluoroethane	or	iodoethane
	heptane	or	2-methylhexane
	octane	or	2,2,3,3-tetramethylbutane
IGHER WATER SOLUBILITY	2-propanol	or	cyclohexanol
	1-butanol	or	1-fluorobutane
	1-pentanol	or	1,5-pentanediol
	diethyl ether	or	tetrahydrofuran (THF)

4. (**20 points**) Indicate (**circle**) whether each proton transfer reaction below favors products, reactants, or neither at equilibrium. Estimate the ratio of products-to-reactants.

5. (**20 points**) Identify (with *) all of the asymmetric carbon atoms (if any) in each of the following structures. (CH6 Practice Problems 6.4 and 6.28)

1 point each Identify each missing * when grading

each incorrect C* -1

6. (20 points) Label the most stable and least stable member of each group. 2 points each

most

least

7. (**20 points**) Design a synthesis for each product from the given starting material. List any inorganic and organic reagents needed for each step. Draw structures for the products of each step. (*Hint*: More than one step is probably required.)

#

8. (**20 points**) Match each of the reactions to the correct reaction coordinate-energy diagram. Draw structures for the species present at each location (1 - 8) on the diagrams. Label each structure with the location number.

#

#

#

8. Reaction Coordinate-Energy Diagrams

9. (**20 points**) Complete the following reactions. If no reaction is likely, explain why. (Suggested Practice Problem 11.2)

10. (**20 points**) myo-Inositol, a natural product found in many foods (oranges and cantaloupes), is the stereoisomer of cyclohexane-1,2,3,4,5,6-hexol shown below. Inositol is a core component of many signaling and secondary messenger molecules involved in a growing list of biological processes (insulin signal transduction, cytoskeleton assembly, gene expression).

Draw structures for the two chair conformations of myo-inositol. Which chair is more stable?

Explain in ten words or less why myo-Inositol (also known as meso-inositol) is achiral.

myo-Inositol is achiral because it has a plane of symmetry (shown in flat-ring). 2

myo-Inositol is one of nine naturally occurring stereoisomers of cyclohexane-1,2,3,4,5,6-hexol. Draw flat-ring structures for the other eight stereoisomers and identify each one as chiral or achiral. 1 point each

