CHEM 3311 (Richardson) Final Exam – May 11, 2017

Your Name			Question	Score	Out of
			1		40
Student ID			2		30
			3		45
Recitation Time	O	8:00 Wednesday w/ Josh Kamps	4		15
(check one)	O	2:00 Wednesday w/ Josh Kamps	5		15
	O	10:00 Thursday w/ Brendan Griffiths	6		35
	O	11:00 Thursday w/ Brendan Griffiths	7		20
	O	12:00 Friday w/ Brendan Griffiths	8		10 e.c.
			Total		200

This is a closed-book exam. The use of notes, calculators, or cell phones will not be allowed during the exam. You may use models sets brought in a clear ziplock bag. Use the backs of the pages for scratch work. If your final answer is not clearly specified, you will lose points. For mechanisms, show all intermediates including correct formal charges, but do not show transition states.

H 1,0079																		He
lithium 3	beryllium 4												boron 5	carbon 6	nitrogen 7	oxygen 8	fluorine 9	neon 10
Li	Be												В	C	N	0	F	Ne
6.941	9.0122												10.811	12.011	14.007	15.999	18.998	20.180
sodium 11	magnesium 12												aluminium 13	silicon 14	phosphorus 15	sulfur 16	chlorine 17	argon 18
Na	Mg												AI	Si	P	S	CI	Ar
22.990	24.305												26.982	28.086	30.974	32.065	35,453	39,948
otassium 19	calcium 20		scandium 21	titanium 22	vanadium 23	chromium 24	manganese 25	iron 26	cobalt 27	nickel 28	copper 29	zinc 30	gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	kryptor 36
	-															5,000		
K	Ca		Sc	- 11	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098 rubidium	40.078 strontium		44.956 yttrium	47.867 zirconium	50.942 niobium	51.996 molybdenum	54.938 technetium	55.845 ruthenium	58.933 rhodium	58.693 palladium	63.546 silver	65.39 cadmium	69.723 indium	72.61 tin	74.922 antimony	78.96 tellurium	79,904 lodine	83.80 xenon
37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr		Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Χe
85.468 caesium	87.62 barium		88.906 lutetium	91.224 hafnium	92.906 tantalum	95.94 tungsten	[98] rhenium	101.07 osmium	102.91 iridium	106.42 platinum	107.87 gold	112.41 mercury	114.82 thallium	118.71 lead	121.76 bismuth	127.60 polonium	126.90 astatine	131.29 radon
55	56	57-70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*	Lu	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rr
132.91	137.33		174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	[209]	[210]	[222]
francium 87	radium 88	89-102	lawrencium 103	rutherfordium 104	dubnium 105	seaborgium 106	bohrium 107	hassium 108	meitnerium 109	ununnilium 110	unununium 111	ununbium 112		ununquadium 114				
Fr	Ra	* *	Lr	Rf	Db	Sg	Bh	Hs	Mt			Uub		Uuq				
[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]		[289]				

*Lanthanide series

* * Actinide series

lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
89	90	91	92	93	94	95	96	97	98	99	100	101	102
Δc	Th	Pa	11	Nn	Dii	Am	Cm	Rk	Cf	Fc	Em	MA	No
AC	111	Га	U	IAD	гu	AIII	CIII	DK	CI	LS	EIII	IVIU	INO
[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

pKa Values

HI	-10	CH ₃ COOH	4.7	ArOH	10	H_2	35
HBr	-8	HN ₃	4.7	RSH	10-12	NH ₃	36
HCl	-6	H_2S	7.0	H_2O	15.7	$H_2C=CH_2$	45
H_3O^+	-1.7	$\mathrm{NH_{4}^{+}}$	9.3	ROH (R=alkyl)	16-18	CH ₄	60
HF	3.2	HCN	9.4	НС≡СН	26		

1) **Predict the product** of the following reactions, and **choose the appropriate descriptor** (reduction, oxidation, or neither) for what happens to the organic molecule during each reaction. You do not need to show stereochemistry. (40 pts)

e.
$$OH \frac{PCC}{CH_2Cl_2}$$

f.
$$\frac{1) O_3}{2) H_2 O_2}$$

g.
$$\frac{\text{MeOH}}{\text{H}_2\text{SO}_4}$$

2) Show a reasonable arrow-pushing mechanism for these reactions, including stereochemistry where necessary. (30 pts)

a.
$$HO$$
 Br_2 O B

b.
$$\underline{H_2O, H^+}$$

3) Find a way to synthesize the desired product from the given starting material. If more than one step is necessary, show the product of each step. Do not show mechanisms. (45 pts)

4) A student performed the reaction below, hoping to synthesize the desired product. What product was actually formed instead? Show a mechanism for its formation. (15 pts)

5) You have found a mysterious bottle in your lab bench labeled "Geraniol – $C_{10}H_{18}O$ ". In an attempt to discover its structure, you perform a few reactions and observe the following results.

Geraniol
$$\frac{H_2, Pd/C}{}$$
 3,7-dimethyl-1-octanol

Geraniol
$$\frac{1) O_3}{2) DMS}$$
 O + O H + O OH

What is the structure of geraniol? (15 pts)

6) The structure of 2-methylbutane is shown below. Sighting along the C2-C3 bond (shown in bold), show a Newman projection for the molecule for dihedral angles in increments of 60°. **Keep the front atom stationary and rotate the back atom clockwise**. For each conformation, plot these energy levels and create a conformational energy diagram. You do not need to calculate the exact energy for each level – a rough estimate is acceptable. (35 pts)

Interaction	Energy
	(kcal/mol)
H/H eclipsed	1
CH ₃ /H eclipsed	1.15
CH ₃ / CH ₃ eclipsed	3.6
CH ₃ / CH ₃ gauche	0.67

2-methylbutane:

	CH ₃						
H ₃ C	H						
H ₃ C	H						
	Interactions:	Interactions:	Interactions:	Interactions:	Interactions:	Interactions:	Interactions:
	2 x CH ₃ /CH ₃						
	gauche						

7) Draw the following molecules in **both** chair conformations, and circle the most stable. (20 pts)

8) Extra credit! Describe the following pairs of molecules as homomers, enantiomers, diastereomers, or constitutional isomers. (10 pts e.c.)