CHEM 3311 (Richardson) Final Exam - May 7, 2015

Your Name

Student ID

Recitation Time 12:00 Monday, 1:00 Monday, 11:00 Tuesday, 1:00 Tuesday, 12:00 Wednesday

Question	Score	Out of
1		20
2		20
3		30
4		30
5		30
6		20
7		20
8		10
9		20
10		10 e.c.
Total		200

This is a closed-book exam. The use of notes, calculators, or cell phones will not be allowed during the exam. You may use models sets brought in a clear ziplock bag. Use the backs of the pages for scratch work. If your final answer is not clearly specified, you will lose points. For mechanisms, show all intermediates including correct formal charges, but do not show transition states.

	•																	
hydrogen 1																	107 -	helium 2
п																		пе
1.0079 lithium	beryllium											i	boron	carbon	nitrogen	oxygen	fluorine	4.0026 neon
3	4												5	6	7	8	9	10
Li	Be												В	С	Ν	0	F	Ne
6.941 sodium	9.0122 magnesium												10.811 aluminium	12.011 silicon	14.007 phosphorus	15.999 sulfur	18.998 chlorine	20.180 argon
11	12												13	14	15	16	17	18
Na	Mg												AI	Si	Ρ	S	CI	Ar
22.990 potossium	24.305		naondium	titanium	waradium	obromium	mondonoco	imp	ashalt	piekol	aannar	Tipo	26.982 colling	28.086	30.974 organia	32.065	35.453 bromine	39.948 koustop
19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098 rubidium	40.078 strontium		44.956 sttrium	47.867 zircopium	50.942 pichium	51.996 molyhdonum	54.938 technotium	55.845 ruthonium	58.933 rhodium	58.693 pollodium	63.546	65.39 oodmium	69.723	72.61	74.922 optimony	78.96 tollurium	79.904 Jodino	83.80 X0000
37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr		Υ	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
85.468	87.62 bodum		88.906 lutotkum	91.224 bafpium	92.906	95.94 hundatan	[98]	101.07	102.91 Mddburg	106.42 platigum	107.87	112.41	114.82 Ibollium	118.71	121.76	127.60 polonium	126.90	131.29
55	56	57-70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33		174.97	178.49	180.95 dubatum	183.84	186.21 holydwrai	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	[209]	[210]	[222]
87	88	89-102	103	104	105	106	107	108	109	110	111	112		114				
Fr	Ra	**	Lr	Rf	Db	Sa	Bh	Hs	Mt	Uun	Uuu	Uub		Uua				
19991	12261		12621	[261]	[262]	12661	12641	[260]	[269]	[271]	12721	12771		[289]				

*Lanthanide series	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
Lantinaniae series	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
* * Actinide series	89	90	91	92	93	94	95	96	97	98	99	100	101	102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	12371	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

	pixe values												
HI	-10	CH ₃ COOH	4.7	Phenol (PhOH)	10	H_2	35						
HBr	-8	HN ₃	4.7	RSH	10-12	NH ₃	36						
HCl	-6	H_2S	7.0	H_2O	15.7	$H_2C=CH_2$	45						
H_3O^+	-1.7	$\mathrm{NH_{4^+}}$	9.3	Alcohol (ROH)	16-18	CH ₄	60						
HF	3.2	HCN	9.4	HC≡CH	26								

pKa Values

1) The three compounds below were reacted with NaH in an attempt to form a neutral product. One reacted very quickly, one reacted very slowly, and one did not react at all. Which is which? Show the product that reach compound formed, or write NR if it no reaction occurred. (20 pts)

2) The reaction conditions shown below produces a mixture of four different alkenes. Show the structures of these alkenes (one has already been provided), and show the mechanism for the formation of alkene A. (20 pts)

Page 3 of 7

3) **Predict the product** of the following reactions, and **choose the appropriate descriptor** (reduction, oxidation, or neither) for what happens to the organic molecule during each reaction. If no reaction occurs then write NR. (30 pts - 3 pts each)

4) Synthesize the desired product from the given starting material. If more than one step is necessary, show the product of each step. Do not show mechanisms. (30 pts - 10 pts each)

Page 5 of 7

Name_____

5) **Show what reagents** you would use to synthesize this ether by each of the following methods, and **show the mechanism** by which the ether forms in each reaction. (30 pts - 10 pts each)

a. Acid-catalyzed ether formation from alcohols

b. Alkoxymercuration-reduction (do not show mechanism for reduction step)

c. Williamson ether synthesis

Page 6 of 7

Name_

- 6) Rank each group of molecules by increasing heat of formation and explain the reason for the ordering in under twenty words per group. (20 pts)
 - a. Methylcyclopentane, cyclohexane, 1,1-dimethylcyclobutane
 - b. cis-2-butene, trans-2-butene, 1-butene
 - c. Hexane, propane, butane
 - d. cis-2-hexene, 2,2-dimethylbutene, 2-methyl-2-pentene
- 7) For each pair of compounds shown below, select the more acidic of the two compounds and explain your reasoning in under ten words. (20 pts)

Page 7 of 7

Name_

8) Draw the following molecules in **both** chair conformations, and circle the most stable. (10 pts)

9) α -Thujone is a monoterpene that was once believed to be responsible for the psychedelic effects of absinthe. Although it is typically isolated directly from wormwood, it can also be synthesized from similar precursors, including sabinene. Show the steps necessary to do this, ignoring stereochemistry. (20 pts)

Sabinene

 α -Thujone

10) Extra credit! In the previous problem, there was one step where three different elimination products could potentially form, but two of those products were disfavored. What are these products, and why is each of them disfavored? (10 pts extra credit)