CHEM 3311-200 (Ellison/Richardson) 3rd Exam – April 16, 2013 | Your Name | | Question | Score | Out of | |----------------------------|-------------------|----------|-------|--------| | | | 1 | | 12 | | Student ID No. | | 2 | | 10 | | | | 3 | | 12 | | Recitation Day/Time | | 4 | | 12 | | | | 5 | | 16 | | Recitation TA (circle one) | Katelyn Chando, | 6 | | 16 | | | Setareh Azarnoush | 7 | | 12 | | | | 8 | | 10 | | | | Total | | 100 | This is a closed-book exam. The use of notes, calculators, scratch paper, or cell phones will not be allowed during the exam. You may use models sets brought in a clear ziplock bag. Use the backs of the pages for scratch work. Please put all your final answers on the test in pen, not pencil. If your final answer is not clearly specified, you will lose points. For mechanisms, show all intermediates including correct formal charges, but do not show transition states. | | Cara | | 10144 | mg c | 0110 | 00101 | IIII | Ollui | 500, | out c | .0 110 | COILO | ** ** | uiioit. | OII D | uicos. | • | | |----------------|-----------------|--------|-------------------|----------------------|----------------|-------------------|---|--|-------------------|-------------------|------------------|-----------------|-----------------|--------------------|---|-----------------|----------------|---------------| | hydrogen | | | | | | | | | | | | | | | | | | helium | | 1 | | | | | | | | | | | | | | | | | | 2 | | H | | | | | | | | | | | | | | | | | | He | | 1.0079 | | | | | | | | | | | | | | | | | | 4.0026 | | lithium
3 | beryllium
4 | | | | | | | | | | | | boron
5 | carbon
6 | nitrogen
7 | oxygen
8 | fluorine
9 | neon
10 | | Li | Be | | | | | | | | | | | | В | C | N | 0 | F | Ne | | 6.941 | 9.0122 | | | | | | | | | | | | 10.811 | 12.011 | 14.007 | 15.999 | 18.998 | 20.180 | | sodium
11 | magnesium
12 | | | | | | | | | | | | aluminium
13 | silicon
14 | phosphorus
15 | sulfur
16 | chlorine
17 | argon
18 | | | | | | | | | | | | | | | | | | . 441 | | _ | | Na | Mg | | | | | | | | | | | | ΑI | Si | Р | S | CI | Ar | | 22.990 | 24.305 | | | | | | | | | | | | 26.982 | 28.086 | 30.974 | 32.065 | 35.453 | 39.948 | | potassium | calcium | | scandium
21 | titanium | vanadium | chromium | manganese
25 | iron
26 | cobalt
27 | nickel
28 | copper
29 | zinc
30 | gallium
31 | germanium
32 | arsenic | selenium | bromine
35 | krypton
36 | | 19 | 20 | | | 22 | 23 | 24 | | | | | | | | | 33 | 34 | | | | K | Ca | | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | | 39.098 | 40.078 | | 44.956 | 47.867 | 50.942 | 51.996 | 54.938 | 55.845 | 58.933 | 58.693 | 63.546 | 65.39 | 69.723 | 72.61 | 74.922 | 78.96 | 79.904 | 83.80 | | rubidium
37 | strontium
38 | | yttrium
39 | zirconium
40 | niobium
41 | molybdenum
42 | technetium
43 | ruthenium
44 | rhodium
45 | palladium
46 | silver
47 | cadmium
48 | indium
49 | tin
50 | antimony
51 | tellurium
52 | lodine
53 | xenon
54 | | | | | | | | 192000-000 | 100 100 100 110 | 18 18 18 18 18 18 18 18 18 18 18 18 18 1 | 100000 | 40 mm O.C. | 120 | 1,000 | - | 2000 | 1 | | 33 | | | Rb | Sr | | Υ | Zr | Nb | Мо | Тс | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | | Xe | | 85,468 | 87.62 | | 88.906 | 91.224 | 92.906 | 95.94 | [98] | 101.07 | 102.91 | 106.42 | 107.87 | 112.41 | 114.82 | 118.71 | 121.76 | 127.60 | 126,90 | 131.29 | | caesium
55 | barium
56 | 57-70 | lutetium
71 | hafnium
72 | tantalum
73 | tungsten
74 | rhenium
75 | osmium
76 | iridium
77 | platinum
78 | gold
79 | mercury
80 | thallium
81 | lead
82 | bismuth
83 | polonium
84 | astatine
85 | radon
86 | | 9.02507 | 1 10 10 10 | 2000 | - | | | 1324355 | 100000000000000000000000000000000000000 | | | | | | | 1,7710.0 | | 2012/201 | 1 0.0257100 | | | Cs | Ba | * | Lu | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | TI | Pb | Bi | Po | At | Rn | | 132.91 | 137.33 | | 174.97 | 178.49 | 180.95 | 183.84 | 186.21 | 190.23 | 192.22 | 195.08 | 196.97 | 200.59 | 204.38 | 207.2 | 208.98 | [209] | [210] | [222] | | francium
87 | radium
88 | 89-102 | lawrencium
103 | rutherfordium
104 | dubnium
105 | seaborgium
106 | bohrium
107 | hassium
108 | meitnerium
109 | ununnilium
110 | unununium
111 | ununbium
112 | | ununquadium
114 | | | | | | | | * * | | Rf | | | Bh | Hs | Mt | Hum | Uuu | | | | | | | | | Fr | Ra | ^ ^ | Lr | | Db | Sg | | | | | | | | Uuq | | | | | | [223] | [226] | | [262] | [261] | [262] | [266] | [264] | [269] | [268] | [271] | [272] | [277] | | [289] | | | | | *Lanthanide series * * Actinide series | lanthanum
57 | cerium
58 | praseodymium
59 | neodymium
60 | promethium
61 | samarium
62 | europium
63 | gadolinium
64 | terbium
65 | dysprosium
66 | holmium
67 | erbium
68 | thulium
69 | ytterbium
70 | |-----------------|---------------|--------------------|-----------------|------------------|-----------------|-----------------|------------------|-----------------|-------------------|-------------------|----------------|--------------------|-----------------| | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dv | Но | Er | Tm | Yb | | 138.91 | 140.12 | 140.91 | 144.24 | [145] | 150.36 | 151.96 | 157.25 | 158.93 | 162.50 | 164.93 | 167.26 | 168.93 | 173.04 | | actinium
89 | thorium
90 | protactinium
91 | uranium
92 | neptunium
93 | plutonium
94 | americium
95 | curium
96 | berkelium
97 | californium
98 | einsteinium
99 | fermium
100 | mendelevium
101 | nobelium
102 | | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | | [227] | 232.04 | 231.04 | 238.03 | [237] | [244] | [243] | [247] | [247] | [251] | [252] | [257] | [258] | [259] | ## pKa Values | HI | -10 | HN_3 | 4.7 | H_2O | 15.7 | |----------------------|------|-------------------|-------|----------------------------------|-------| | HBr | -8 | H_2S | 7.0 | Alcohol (ROH) | 16-18 | | HCl | -6 | $\mathrm{NH_4}^+$ | 9.3 | HC≡CH | 26 | | H_3O^+ | -1.7 | HCN | 9.4 | Amines (e.g. LDA) | 36 | | HF | 3.2 | Phenol | 10 | H ₂ C=CH ₂ | 45 | | CH ₃ COOH | 4.7 | RSH | 10-12 | CH ₄ | 60 | 1) For each of the following pairs of reactions, circle the one that would be faster at S_N2 and explain why in under ten words. If both are equal, do not circle an option. (3 pts each) a. $$CI + CH_3ONa + CH_3OH$$ $CI + CH_3ONa + CH_3OH$ c. $$Br + CH_3ONa + CH_3OH$$ $CI + CH_3ONa + CH_3OH$ 2) One of these molecules undergoes E2 elimination much faster than the other. Circle the faster molecule and explain why it is faster in under twenty words, but with as many structure drawings as you need. (10 pts) 3) For each of the following pairs of reactions, circle the one with the higher boiling point and explain why it is higher in under ten words. (3 pts each) 4) When the compound shown below is exposed to $CH_3C \equiv CLi$ in DMF, a single product is formed with the formula $C_5H_{10}O_2$. Show the structure of this product and the mechanism that forms it. (12 pts) $$\begin{array}{cccc} OH & & & \\ & & & \\ HO & & & \\ \end{array} \begin{array}{ccccc} OH & & & \\ \hline DMF & & \\ \end{array} \begin{array}{ccccc} C_5H_{10}O_2 & & & \\ \end{array}$$ 5) For each reaction shown below, predict the organic product(s). Ignore stereochemistry. (4 pts each) a. $$\frac{1) BH_3}{2) H_2O, H_2O_2, OH}$$ 6) For each of the reactions shown below, **circle the mechanism(s)** you would expect to see, if any, and **draw the product(s)**. If a product has stereocenters, show its configuration using wedges and dashes. If an elimination occurs, show only the major alkene product. If none of the mechanisms would take place in a reasonable time frame, write NR for No Reaction. (4 pts each) a. $$\frac{\text{KI}}{\text{DMSO}} = \begin{bmatrix} \text{E2} & \text{S}_{\text{N}}2\\ \text{E1} & \text{S}_{\text{N}}1 \end{bmatrix}$$ b. $$\frac{\text{tBuOK}}{\text{tBuOH}}$$ E2 S_N2 E1 S_N1 c. $$CH_3ONa$$ $E2$ S_N2 $E1$ S_N1 d. $$CH_3COON_a$$ $E2$ S_N2 CH_3COOH $E1$ S_N1 7) Find a way to synthesize the desired product from the given starting material. If more than one step is necessary, show the product of each step. Do not show mechanisms. (12 pts) $$\bigcap$$ \bigcap \bigcap_{N_3} 8) Show the mechanism and product of the following reaction. (10 pts)